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Abstract

The duality between partonic and hadronic descriptions of physical phe-

nomena is one of the most remarkable features of strong interaction physics.

A classic example of this is in electron-nucleon scattering, in which low-energy

cross sections, when averaged over appropriate energy intervals, are found to

exhibit the scaling behavior expected from perturbative QCD. We present a

comprehensive review of data on structure functions in the resonance region,

from which the global and local aspects of duality are quantified, including its

flavor, spin and nuclear medium dependence. To interpret the experimental

findings, we discuss various theoretical approaches which have been developed

to understand the microscopic origins of quark-hadron duality in QCD. Ex-

amples from other reactions are used to place duality in a broader context,

and future experimental and theoretical challenges are identified.

PACS: 13.60.Hb; 12.40.Nn; 24.85.+p

1



Contents

I Introduction 4

II Lepton–Nucleon Scattering: Kinematics and Cross Sections 8
A Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
B Spin-Averaged Cross Sections . . . . . . . . . . . . . . . . . . . . . . . . . 9
C Spin Structure Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
D Moments of Structure Functions . . . . . . . . . . . . . . . . . . . . . . . 14

III Quark-Hadron Duality: An Historical Perspective 16
A Duality in Hadronic Reactions . . . . . . . . . . . . . . . . . . . . . . . . 16

1 Finite Energy Sum Rules . . . . . . . . . . . . . . . . . . . . . . . . . 17
2 Veneziano Model and Two-Component Duality . . . . . . . . . . . . . 20

B Duality In Inclusive Electron Scattering . . . . . . . . . . . . . . . . . . . 24
1 Bloom-Gilman Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2 Duality in the Context of QCD . . . . . . . . . . . . . . . . . . . . . . 26

IV Bloom-Gilman Duality: Experimental Status 30
A Duality in the F2 Structure Function . . . . . . . . . . . . . . . . . . . . . 30

1 Local Duality for the Proton . . . . . . . . . . . . . . . . . . . . . . . 30
2 Low Q2 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3 Duality in Nuclei and the EMC Effect . . . . . . . . . . . . . . . . . . 42

B Longitudinal and Transverse Cross Sections . . . . . . . . . . . . . . . . . 44
1 Duality in the Separated Structure Functions . . . . . . . . . . . . . . 44
2 Moments of F1 and FL . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

C Duality in Spin-Dependent Structure Functions . . . . . . . . . . . . . . . 56
1 Proton g1 Structure Function . . . . . . . . . . . . . . . . . . . . . . . 56
2 Experiments with Polarized 2H and 3He Targets . . . . . . . . . . . . 61
3 Sum Rules at Low and High Q2 . . . . . . . . . . . . . . . . . . . . . . 63
4 The g2 Structure Function . . . . . . . . . . . . . . . . . . . . . . . . . 67

D Scaling in Electro-Pion Production . . . . . . . . . . . . . . . . . . . . . . 71

V Theoretical Foundations 80
A QCD and the Twist Expansion . . . . . . . . . . . . . . . . . . . . . . . . 80

1 The OPE, Resonances and Duality . . . . . . . . . . . . . . . . . . . . 80
2 Physics of Higher Twists . . . . . . . . . . . . . . . . . . . . . . . . . 84
3 The Transition to Q2 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . 90

B Scaling and Duality in Dynamical Models . . . . . . . . . . . . . . . . . . 95
1 Confinement and Scaling . . . . . . . . . . . . . . . . . . . . . . . . . 97
2 Resonances and the Transition to Scaling . . . . . . . . . . . . . . . . 104

C Local Duality: Phenomenological Applications . . . . . . . . . . . . . . . 113
1 Local Elastic Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
2 Duality in the Quark Model . . . . . . . . . . . . . . . . . . . . . . . . 120
3 Duality in Electron-Pion Scattering . . . . . . . . . . . . . . . . . . . . 126

2



D Duality in Semi-Inclusive Reactions . . . . . . . . . . . . . . . . . . . . . 129
1 Dynamical Models of Duality in Pion Production . . . . . . . . . . . . 130
2 Jet Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

E Duality in Exclusive Reactions . . . . . . . . . . . . . . . . . . . . . . . . 137
1 Correspondence Principle . . . . . . . . . . . . . . . . . . . . . . . . . 137
2 Real Compton Scattering . . . . . . . . . . . . . . . . . . . . . . . . . 139
3 (Deeply) Virtual Compton Scattering . . . . . . . . . . . . . . . . . . 139
4 Exclusive Hard Pion Photoproduction . . . . . . . . . . . . . . . . . . 142

VI Quark-Hadron Duality in Related Fields 145
A QCD Sum Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

1 Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
2 Duality for the ρ Meson . . . . . . . . . . . . . . . . . . . . . . . . . . 149

B Electron-Positron Annihilation . . . . . . . . . . . . . . . . . . . . . . . . 152
1 Smearing Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
2 Vector Meson Dominance . . . . . . . . . . . . . . . . . . . . . . . . . 156
3 Potential Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4 e+e− Annihilation in the ’t Hooft Model . . . . . . . . . . . . . . . . . 160

C Heavy Meson Decays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
1 Duality in Heavy Quark Systems: a Pedagogical Example . . . . . . . 161
2 Semileptonic Weak Decays . . . . . . . . . . . . . . . . . . . . . . . . 163
3 Nonleptonic (Hadronic) Weak Decays . . . . . . . . . . . . . . . . . . 165

D Proton-Antiproton Annihilation . . . . . . . . . . . . . . . . . . . . . . . 167
E Reprise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

VII Outlook 169
A Why is Duality Relevant? . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
B Duality in Inclusive Electron Scattering . . . . . . . . . . . . . . . . . . . 171

1 Low Q2 Structure Functions . . . . . . . . . . . . . . . . . . . . . . . . 171
2 Structure Functions at Large x . . . . . . . . . . . . . . . . . . . . . . 172

C Neutrino Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
D Duality in Meson Electroproduction . . . . . . . . . . . . . . . . . . . . . 177

VIII Conclusion 180

3



I. INTRODUCTION

Three decades after the establishment of QCD as the theory of the strong nuclear force,
understanding how QCD works remains one of the great challenges in nuclear physics. A
major obstacle arises from the fact that the degrees of freedom observed in nature (hadrons
and nuclei) are totally different from those appearing in the QCD Lagrangian (current quarks
and gluons). The remarkable feature of QCD at large distances — quark confinement —
prevents the individual quark and gluon constituents making up hadronic bound states
to be removed and examined in isolation. Making the transition from quark and gluon
(or generically, parton) to hadron degrees of freedom is therefore the key to our ability to
describe nature from first principles.

The property of QCD known as asymptotic freedom, in which quarks interact weakly at
short distances, allows one to calculate hadronic observables at asymptotically high energies
perturbatively, in terms of expansions in the strong coupling constant gs, or more commonly
αs = g2

s/4π. Figure 1 shows a recent summary of all measurements of αs [1], as a function of
the momentum scale Q. The small value of αs at large momentum scales (or short distances)
makes possible an efficient description of phenomena in terms of quarks and gluons.

At low momentum scales, on the other hand, where αs is large, the effects of confinement
make strongly-coupled QCD highly nonperturbative. Here, it is more efficient to work with
collective degrees of freedom, the physical mesons and baryons. Because of confinement,
quarks and gluons must end up in color singlet bound states of hadrons, so that exact QCD
calculations at some level must be sensitive to multihadron effects.

Despite the apparent dichotomy between the partonic and hadronic regimes, in nature
there exist instances where the behavior of low-energy cross sections, averaged over appro-
priate energy intervals, closely resembles that at asymptotically high energies, calculated in
terms of quark-gluon degrees of freedom. This phenomenon is referred to as quark-hadron
duality, and reflects the relationship between confinement and asymptotic freedom, and the
transition from perturbative to nonperturbative regimes in QCD. Such duality is in fact
quite general, and arises in many different physical processes, such as in e+e− annihila-
tion into hadrons, or semi-leptonic decays of heavy mesons. In electron–nucleon scattering,
quark-hadron duality links the physics of resonance production to the physics of scaling,
and is the focus of this review.

The observation of a nontrivial relationship between inclusive electron–nucleon scatter-
ing cross sections at low energy, in the region dominated by the nucleon resonances, and
that in the deep inelastic scaling regime at high energy predates QCD itself. While ana-
lyzing the data from the early deep inelastic scattering experiments at SLAC, Bloom and
Gilman observed [2,3] that the inclusive structure function at low hadronic final state mass,
W , generally follows a global scaling curve which describes high-W data, to which the reso-
nance structure function averages. Initial interpretations of this duality used the theoretical
tools available at the time, namely finite energy sum rules, or consistency relations between
hadronic amplitudes inspired by the developments in Regge theory which occurred in the
1960s [4].

Following the advent of QCD in the early 1970s, Bloom-Gilman duality was reformu-
lated [5,6] in terms of an operator product (or “twist”) expansion of moments of structure
functions. This allowed a systematic classification of terms responsible for duality and its vi-
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FIG. 1. Summary of measurements of αs(Q). The curves shown differ in their choice of the

QCD scale parameter, ΛQCD. (From Ref. [1].)

olation in terms of so-called “higher-twist” operators, which describe long-range interactions
between quarks and gluons. Ultimately, however, this description fell short of adequately
explaining why particular multi-parton correlations were suppressed, and how the physics of
resonances gave way to scaling. From the mid-1970s the subject was largely forgotten for
almost two decades, as attention turned from the complicated resonance region to the more
tractable problem of calculating higher order perturbative corrections to parton distribu-
tions, and accurately describing their Q2 evolution.

With the development of high luminosity beams at modern accelerator facilities such as
Jefferson Lab (JLab), a wealth of new information on structure functions, with unprece-
dented accuracy and over a wide range of kinematics, has recently become available. One of
the striking findings of the new JLab data [7] is that Bloom-Gilman duality appears to work
exceedingly well, down to Q2 values as low as 1 GeV2 or even below, which is considerably
lower than previously believed. Furthermore, the equivalence of the averaged resonance and
scaling structure functions seems to hold for each of the prominent resonance regions indi-
vidually, indicating that a resonance–scaling duality exists to some extent locally as well.
Even though at such low Q2 values αs is relatively large, on average the inclusive scattering
process appears to mimic the scattering of electrons from almost free quarks. All of this
has subsequently led to a resurgence of interest in questions about the origin of duality in
deep inelastic scattering and related processes, and has motivated a number of theoretical
studies which have helped to elucidate important aspects of the transition from coherent to
incoherent phenomena.

In principle, at high energies the duality between quark and hadron descriptions of
phenomena can be considered as formally exact. However, for a limited energy range, there
is no reason to expect the accuracy to which duality holds and the kinematic regime where
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it applies to be similar for different physical processes. In fact, there could be qualitative
differences between the workings of duality in spin-dependent structure functions and spin-
averaged ones, or for different hadrons — protons compared to neutrons, for instance. The
new data not only allow one to study in unprecedented detail the systematics of duality
in local regions of kinematics, but also for the first time make it possible to examine the
spin and target dependence of duality. In addition, they allow more reliable studies of
the moments of structure functions in the intermediate Q2 region, where there are sizable
contributions from nucleon resonances.

The recent resonance structure function studies have revealed an important application
of duality: if the workings of the resonance–deep inelastic interplay are sufficiently well
understood, the region of high Bjorken-x (x >∼ 0.7, where x is the longitudinal momentum
fraction of the hadron carried by the parton in the infinite momentum frame) would become
accessible to precision studies. As we explain later in this report, there are many reasons
why accurate knowledge of the large-x region is important. However, due to limitations of
luminosity and energy, this region has not been mapped out with the required precision in
any experiments to date. Other applications of duality can be found in providing an efficient
average low-energy description of hadronic physics used in the interpretation of neutrino
oscillation and high energy physics experiments, and in a more detailed understanding of
how quarks evolve into hadrons (hadronization). The latter is the subject of duality studies
in meson electroproduction reactions, where at present only sparse data exist.

Finally, it is important to note that the moments of polarized and unpolarized structure
functions are currently the subject of some attention in lattice QCD simulations. Com-
parisons of the experimental moments with those calculated on the lattice over a range
Q2 ≈ 1–10 GeV2 will allow one to determine the size of higher twist corrections and the role
played by quark-gluon correlations in the nucleon. For the experimental moments, an appre-
ciable fraction of the strength resides in the nucleon resonance region, so that understanding
of quark-hadron duality is vital also for the interpretation of the results from lattice QCD.

In view of the accumulation of high precision data on structure functions in the
resonance–scaling transition region, and the recent theoretical developments in understand-
ing the origins of duality, it is timely therefore to review the status of quark-hadron duality
in electron–nucleon scattering. Following a review of definitions and kinematics relevant for
inclusive scattering in Section II, we give an historical perspective of duality in Section III,
recalling the understanding and interpretation of quark-hadron duality as it existed up to
the 1970s. Section IV is the central experimental part of this review, where we describe
the progress in the study of duality in both spin-averaged and spin-dependent structure
functions over the last decade. Readers familiar with Regge theory and duality in hadronic
reactions may wish to omit Sec. III and proceed to Sec. IV directly.

The theoretical foundations of quark-hadron duality are reviewed in Section V. Here we
firstly outline the basic formalism of the operator product expansion relevant for the inter-
pretation of duality in terms of higher twist suppression. This is followed by a survey of
duality in various dynamical models which have been used to verify the compatibility of scal-
ing in the presence of confinement. We then proceed to more phenomenological applications
of local duality, and extensions of duality to semi-inclusive and exclusive reactions.

To shed light on the more fundamental underpinnings of quark-hadron duality in QCD, in
Section VI the concept of duality in electron scattering is compared to that in closely-related
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fields, such as e+e− annihilation into hadrons, heavy meson decays, and proton-antiproton
annihilation. Section VII deals with applications of duality and anticipated studies over the
next decade, and some concluding remarks are given in Section VIII.
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II. LEPTON–NUCLEON SCATTERING: KINEMATICS AND CROSS SECTIONS

In this section we present the kinematics relevant for inclusive lepton–nucleon scattering,
and introduce notations and definitions for cross sections, structure functions, and their
moments, both for unpolarized and polarized scattering. These can be found in standard
texts [8,9], but the most relevant formulas are provided here for completeness.

A. Kinematics

The process which we focus on mainly in this report is inclusive scattering of an electron
(the case of muon or neutrino scattering is similar) from a nucleon (or another hadronic or
nuclear) target, eN → e′X, where X represents the inclusive hadronic final state. In the
target rest frame, the incident electron with energy E scatters from the target through an
angle θ, with a recoil energy E ′. In the one-photon (or Born) approximation, as illustrated
in Fig. 2, the scattering takes place via the exchange of a virtual photon (or W± or Z boson
in neutrino scattering) with energy

ν = E − E ′ , (1)

and momentum ~q.

e (k’)e (k)

N (p)

(q)

X

γ∗

FIG. 2. Inclusive lepton–nucleon scattering in the one-photon exchange approximation. The

four-momenta of the particles are given in parentheses.

Throughout we use natural units, h̄ = c = 1, so that momenta and masses are expressed
in units of GeV (rather than GeV/c or GeV/c2). The virtuality of the photon is then given
by q2 = ν2 − ~q 2. Since the photon is spacelike, it is often more convenient to work with the
positive quantity Q2 ≡ −q2, which is related to the electron energies and scattering angle
by
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Q2 = 4EE ′ sin2 θ

2
, (2)

where we have also neglected the small mass of the electron. The invariant mass squared of
the final hadronic state is

W 2 = (p+ q)2 = M2 + 2Mν −Q2 , (3)

where p and q are the target nucleon and virtual photon four-momenta, respectively, and
M is the nucleon mass.

The cross sections for this process in general depend on two independent variables, which
can be taken to be the scattering angle and recoil energy, or alternatively ν and Q2. Often
they are also expressed in terms of the ratio of Q2 and ν, through the Bjorken x variable,

x =
Q2

2Mν
. (4)

In terms of x, the hadronic state mass W can also be written as W 2 = M2 +Q2(1 − x)/x.
For the special case of elastic scattering, one has W = M , and hence x = 1.

B. Spin-Averaged Cross Sections

In the one-photon exchange approximation, the differential cross section for scattering
unpolarized electrons from an unpolarized nucleon target can be written as

d2σ

dΩdE ′
=
α2

Q4

E ′

E
LµνW

µν , (5)

where α is the fine structure constant, and Ω = Ω(θ, φ) is the laboratory solid angle of the
scattered electron. The leptonic tensor Lµν averaged over initial spins is given by

Lµν = 2
(
kµk

′
ν + k′µkν − gµνk · k′

)
, (6)

where k and k′ are the initial and final electron momenta, respectively.
The hadronic tensor W µν contains all of the information about the structure of the

nucleon target. Using constraints from Lorentz and gauge invariance, together with parity
conservation, the hadronic tensor can be decomposed into two independent structures,

W µν = W1(ν,Q
2)

(
qµqν

q2
− gµν

)
+
W2(ν,Q

2)

M2

(
pµ +

p · q
q2

qµ

)(
pν +

p · q
q2

qν

)
, (7)

where W1 and W2 are scalar functions of ν and Q2. Using Eqs. (6) and (7), the differential
cross section can then be written

d2σ

dΩdE ′
= σMott

(
2W1(ν,Q

2) tan2 θ

2
+W2(ν,Q

2)

)
, (8)

where σMott is the Mott cross section for scattering from a point particle,
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σMott =
4α2E ′2

Q4
cos2 θ

2
. (9)

Note that for a structureless target, W1 and W2 become δ-functions, and Eq. (8) reduces to
the Dirac cross section for scattering from spin-1/2 particles.

In the Bjorken limit, in which both Q2 and ν → ∞, but x is fixed, the structure functions
W1 and W2 exhibit scaling. Namely, they become independent of Q2, and are functions of
the variable x only (logarithmic Q2 dependence enters at finite Q2 through QCD radiative
effects). It is convenient therefore to introduce the dimensionless functions F1 and F2, defined
by

F1(x,Q
2) = MW1(ν,Q

2) , (10)

F2(x,Q
2) = νW2(ν,Q

2) . (11)

In the quark-parton model the F1 and F2 structure functions are given in terms of quark
and antiquark distribution functions, q(x) and q̄(x),

F2(x) = 2xF1(x) = x
∑

q

e2q (q(x) + q̄(x)) , (12)

where q(x) is interpreted as the probability to find a quark of flavor q in the nucleon with
light-cone momentum fraction x. The relation between the F1 and F2 structure functions
in Eq. (12) is referred to as the Callan-Gross relation [10]. Beyond the quark-parton model,
the residual Q2 dependence in F1 and F2 arises from scaling violations through perturbative
QCD corrections, as well as 1/Q2 power corrections which will be discussed in the following
sections. In terms of these dimensionless functions, the differential cross section can be
written as

d2σ

dΩdE ′
= σMott

(
2

M
F1(x,Q

2) tan2 θ

2
+

1

ν
F2(x,Q

2)

)
. (13)

Expressed in this way, the functions F1 and F2 reflect the possibility of magnetic as well as
electric scattering, or alternatively, the photoabsorption of either transversely (helicity ±1)
or longitudinally (helicity 0) polarized photons. From this perspective, the cross section can
be expressed in terms of σT and σL, the cross sections for the absorption of transverse and
longitudinal photons,

σ ≡ d2σ

dΩdE ′
= Γ

(
σT (x,Q2) + ǫσL(x,Q2)

)
. (14)

Here Γ is the flux of transverse virtual photons,

Γ =
α

2π2Q2

E ′

E

K

1 − ǫ
, (15)

where, in the Hand convention, the factor K is given by

K =
W 2 −M2

2M
= ν(1 − x) . (16)
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The ratio of longitudinal to transverse virtual photon polarizations,

ǫ =

[
1 + 2(1 +

ν2

Q2
) tan2 θ

2

]−1

, (17)

ranges between ǫ = 0 and 1.
In terms of σT and σL, the structure functions F1 and F2 can be written as

F1(x,Q
2) =

K

4π2α
MσT (x,Q2) , (18)

F2(x,Q
2) =

K

4π2α

ν

(1 + ν2/Q2)

[
σT (x,Q2) + σL(x,Q2)

]
. (19)

The ratio of longitudinal to transverse cross sections can also be expressed as

R ≡ σL

σT

=
F2

2xF1

(
1 +

4M2x2

Q2

)
− 1 . (20)

Note that while the F1 structure function is related only to the transverse virtual photon
coupling, F2 is a combination of both transverse and longitudinal couplings. It is useful
therefore to define a purely longitudinal structure function FL,

FL =

(
1 +

Q2

ν2

)
F2 − 2xF1 , (21)

in which case the ratio R can be written

R =
FL

2xF1
. (22)

Using the ratio R, the F2 structure function can be extracted from the measured differential
cross sections according to

F2 =
σ

σMott
νǫ

(1 +R)

(1 + ǫR)
. (23)

Knowledge of R is therefore a prerequisite for extracting information on F2 (or F1) from
inclusive electron scattering cross sections.

To complete the discussion of unpolarized scattering, we give the expressions for the
inclusive neutrino scattering cross sections. For the charged current reactions νN → e−X
or ν̄N → e+X, constraints of Lorentz and gauge invariance allow the cross section to be
expressed in terms of three functions,

d2σν,ν̄

dΩdE ′
=
G2

FE
′2

2π2

(
M2

W

M2
W +Q2

)2 (
2W ν,ν̄

1 (ν,Q2) sin2 θ

2
+W ν,ν̄

2 (ν,Q2) cos2 θ

2

± W ν,ν̄
3

E + E ′

M
sin2 θ

2

)
, (24)
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where GF is the Fermi weak interaction coupling constant, and MW is the W -boson mass
(with analogous expressions for the neutral current cross sections). In analogy with Eqs. (10)
and (11), one can define dimensionless structure functions for neutrino scattering as

F ν,ν̄
1 (x,Q2) = MW ν,ν̄

1 (ν,Q2) , (25)

F ν,ν̄
2 (x,Q2) = νW ν,ν̄

2 (ν,Q2) , (26)

F ν,ν̄
3 (x,Q2) = νW ν,ν̄

3 (ν,Q2) . (27)

The main difference between the electromagnetic and weak scattering cases is the presence in
Eq. (24) of the parity-violating term proportional to the function W3. Because of its parity
transformation properties, it is also odd under charge conjugation, so that in the parton
model the F3 structure function of an isoscalar nucleon (N = (p + n)/2) is proportional to
the difference of quark distributions rather than their sum,

xF νN
3 (x) = x

∑

q

(q(x) − q̄(x)) . (28)

C. Spin Structure Functions

Inclusive scattering of a polarized electron beam from a polarized nucleon target allows
one to study the internal spin structure of the nucleon. Recent technical improvements in
polarized beams and targets have made possible increasingly accurate measurements of two
additional structure functions, g1 and g2.

For spin-dependent scattering, the differential cross section can be written as a product
of leptonic and hadronic tensors, LA

µνW
µν
A , in analogy with Eq. (5), where both tensors are

now antisymmetric in the Lorentz indices µ and ν. The antisymmetric leptonic tensor is
given by

LA
µν = ∓ 2iǫµνρλk

ρk′λ (29)

for electron helicity ±1. The antisymmetric hadron tensor is written in terms of the spin
dependent g1 and g2 structure functions as

W µν
A = iǫµνρλ qρ

p · q

(
g1(x,Q

2)sλ + g2(x,Q
2)

[
sλ − s · q

p · q pλ

])
, (30)

where sλ is the spin four-vector of the target nucleon, with s2 = −1 and p · s = 0.
The structure functions g1 and g2 can be extracted from measurements where longitudi-

nally polarized leptons are scattered from a target that is polarized either longitudinally or
transversely relative to the electron beam. For longitudinal beam and target polarization,
the difference between the spin-aligned and spin-antialigned cross sections is given by

d2σ↑⇓

dΩdE ′
− d2σ↑⇑

dΩdE ′
= σMott

1

Mν
4 tan2 θ

2

(
[E + E ′ cos θ]g1(x,Q

2) − 2Mxg2(x,Q
2)
)
, (31)

where the arrows ↑ and ⇑ denote the electron and nucleon spin orientations, respectively.
Because of the kinematic factors associated with the g1 and g2 terms in Eq. (31), at high
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energies the g1 structure function dominates the longitudinally polarized cross section. The
g2 structure function can be extracted if one in addition measures the cross section for a
nucleon polarized in a direction transverse to the beam polarization,

d2σ↑⇒

dΩdE ′
− d2σ↑⇐

dΩdE ′
= σMott

1

Mν
4E ′ tan2 θ

2
sin θ

(
g1(x,Q

2) +
2E

ν
g2(x,Q

2)
)
. (32)

In practice, it is often easier to measure polarization asymmetries, or ratios of spin-
dependent to spin-averaged cross sections. The longitudinal (A‖) and transverse (A⊥) po-
larization asymmetries are defined by

A‖ =
σ↑⇓ − σ↑⇑

σ↑⇓ + σ↑⇑
, (33)

A⊥ =
σ↑⇒ − σ↑⇐

σ↑⇒ + σ↑⇐
, (34)

where for shorthand we denote σ↑⇓ ≡ d2σ↑⇓/dΩdE ′, etc. The g1 and g2 structure functions
can then be extracted from the polarization asymmetries according to

g1(x,Q
2) = F1(x,Q

2)
1

d′

(
A‖ + tan

θ

2
A⊥

)
, (35)

and

g2(x,Q
2) = F1(x,Q

2)
y

2d′

(
E + E ′ cos θ

E ′ sin θ
A⊥ − A‖

)
, (36)

where d′ = (1 − ǫ)(2 − y)/[y(1 + ǫR(x,Q2))], and y = ν/E.
One can also define virtual photon absorption asymmetries A1 and A2 in terms of the

measured asymmetries,

A‖ = D(A1 + ηA2) , (37)

A⊥ = d(A2 − ζA1) , (38)

where the photon depolarization factor is D = (1 − E ′ǫ/E)/(1 + ǫR(x,Q2)), and the other

kinematic factors are given by η = ǫ
√
Q2/(E−E ′ǫ), d = D

√
2ǫ/(1 + ǫ), and ζ = η(1+ ǫ)/2ǫ.

The A1 asymmetry can also directly be expressed in terms of the g1, g2 and F1 structure
functions,

A1(x,Q
2) =

1

F1(x,Q2)

(
g1(x,Q

2) − 4M2x2

Q2
g2(x,Q

2)

)
. (39)

At small values of x2/Q2, one then has A1 ≈ g1/F1. If the Q2 dependence of the polarized
and unpolarized structure functions is similar, the polarization asymmetry A1 will be weakly
dependent on Q2. This may be convenient when comparing resonance region data with deep
inelastic data. On the other hand, a presentation of the data in terms of g1 is less sensitive
to the detailed knowledge of g2 or A2. Note that both the spin structure functions and the
polarization asymmetries depend on the unpolarized structure function F1, and hence require
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knowledge of R to determine F1 from the measured unpolarized cross sections. Furthermore,
positivity constrains lead to bounds on the magnitude of the virtual photon asymmetries,

|A1| ≤ 1 , |A2| ≤
√
R(x,Q2) . (40)

Finally, in the quark-parton model the g1 structure function is expressed in terms of
differences between quark distributions with spins aligned (q↑) and antialigned (q↓) relative
to that of the nucleon, ∆q(x) = q↑(x) − q↓(x),

g1(x) =
1

2

∑

q

e2q (∆q(x) + ∆q̄(x)) . (41)

The g2 structure function, on the other hand, does not have a simple partonic interpretation.
However, its measurement provides important information on the so-called higher twist
contributions, which form a main focus in this review.

D. Moments of Structure Functions

Having introduced the unpolarized and polarized structure functions above, here we de-
fine their moments, or x-weighted integrals. Following standard notation, the n-th moments
of the spin-averaged F1, F2 and FL structure functions are defined as

M
(n)
1 (Q2) =

∫ 1

0
dx xn−1F1(x,Q

2) , (42)

M
(n)
2,L(Q2) =

∫ 1

0
dx xn−2F2,L(x,Q2) , (43)

and similarly for the neutrino structure functions F ν,ν̄
1,2,3. With this definition, in which the

moments are usually referred to as the Cornwall-Norton moments [11], the n = 1 moment
of the F1 structure function in the parton model effectively counts quark charges, while the
n = 2 moment of the F2 structure function corresponds to the momentum sum rule. In
the Bjorken limit, the moments of the F1 and F2 structure functions are related via the
Callan-Gross relation, Eq. (12), as M

(n)
2 = 2M

(n)
1 .

As discussed in Sec. VA1 below, formally the operator product expansion in QCD defines
the moments for n = 2, 4, 6 . . .. To obtain moments for other values of n requires an analytic
continuation to be made in n. Alternatively, if the x dependence of the structure functions is
known, one can define the moments operationally via Eqs. (42) and (43). Note that formally
the moments include also the elastic point at x = 1, which, while negligible at high Q2, can
give large contributions at small Q2.

The Cornwall-Norton moments defined in terms of the Bjorken x scaling variable are
appropriate in the region of kinematics where Q2 is much larger than typical hadronic mass
scales, where corrections of the type M2/Q2 can be neglected. In this case only operators
with spin n contribute to the n-th moments (see Sec. VA). For finite M2/Q2, however,
the n-th moments receive contributions from spins n and higher, which can complicate the
physical interpretation of the moments.
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By redefining the moments in terms of a generalized scaling variable ξ which takes
target mass corrections into account, Nachtmann [12] showed that the new n-th moments
still receive contributions from spin n operators only, even at finite M2/Q2. Specifically, for
the F2 structure function one has [12,13]

M
N(n)
2 (Q2) =

∫ 1

0
dx

ξn+1

x3

{
3 + 3(n + 1)r + n(n + 2)r2

(n+ 2)(n+ 3)

}
F2(x,Q

2) , (44)

where

ξ =
2x

1 +
√

1 + 4M2x2/Q2
(45)

is the Nachtmann scaling variable, and r =
√

1 + 4M2x2/Q2). In the limit Q2 → ∞ one

can easily verify that the moment M
N(n)
2 →M

(n)
2 in Eq. (43). Similarly, for the longitudinal

Nachtmann moments, one has [12,14]

M
N(n)
L (Q2) =

∫ 1

0
dx

ξn+1

x3

{
FL(x,Q2) +

4M2x2

Q2

(n + 1)ξ/x− 2(n+ 2)

(n + 2)(n+ 3)
F2(x,Q

2)

}
, (46)

which approaches M
(n)
L in the Q2 → ∞ limit. The Nachtmann ξ variable and the cor-

responding moments can also be generalized to include finite quark mass effects [15,16],
although in practice this is mainly relevant for heavy quarks.

For spin-dependent scattering, the n-th Cornwall-Norton moments of the g1 and g2 struc-
ture functions are defined analogously to Eqs. (42) and (43) as

Γ
(n)
1,2 (Q2) =

∫ 1

0
dx xn−1g1,2(x,Q

2) , (47)

for n = 1, 3, 5 . . . in the case of the g1 structure function, and n = 3, 5 . . . for g2. With this
definition the n = 1 moment of g1 corresponds to the nucleon axial vector charge. As for
the unpolarized moments, for other values of n one needs to either analytically continue in
n, or define the moments operationally via Eq. (47). In the text we will sometimes refer to

the lowest (n = 1) moments Γ
(1)
1,2 simply as Γ1,2, without the superscript.

The finite-Q2 generalization of the Γ
(n)
1 moment of the g1 structure function in terms of

the Nachtmann ξ variable is given by [17]

Γ
N(n)
1 (Q2) =

∫ 1

0
dx

ξn+1

x2

{[
x

ξ
− n2

(n + 2)2

M2x2

Q2

ξ

x

]
g1(x,Q

2) − 4n

n+ 2

M2x2

Q2
g2(x,Q

2)

}
, (48)

which approaches Γ
(n)
1 in the limit Q2 → ∞. For the g2 structure function, the most direct

generalization is actually one which contains a combination of g1 and g2 (corresponding to
“twist-3” — see Sec. VA2) [17],

Γ
N(n)
2 (Q2) =

∫ 1

0
dx

ξn+1

x2

{
x

ξ
g1(x,Q

2) +

[
n

n− 1

x2

ξ2
− n

n + 1

M2x2

Q2

]
g2(x,Q

2)

}
, (49)

so that in the limit Q2 → ∞, one has Γ
N(n)
2 → Γ

(n)
1 + n/(n− 1)Γ

(n)
2 .
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III. QUARK-HADRON DUALITY: AN HISTORICAL PERSPECTIVE

Before embarking on the presentation of the recent data on structure functions in the
resonance region and assessing their impact on our theoretical understanding of Bloom-
Gilman duality, it will be instructive to trace the origins of this phenomenon back to the
late 1960s in order to appreciate the context in which the early discussions of duality took
place. The decade or so preceding the development of QCD saw tremendous effort devoted to
describing hadronic interactions in terms of S-matrix theory and self-consistency relations.
One of the profound discoveries of that era was the remarkable relationship between low-
energy hadronic cross sections and their high-energy behavior, in which the former on average
appears to mimic certain features of the latter. In this section we briefly review the original
findings on duality in hadronic reactions, and describe how this led to the descriptions of
duality in the early electron scattering experiments.

A. Duality in Hadronic Reactions

Historically, duality in strong interaction physics represented the relationship between
the description of hadronic scattering amplitudes in terms of s-channel resonances at low
energies, and t-channel Regge poles at high energies, as illustrated in Fig. 3. The study of
hadronic interactions within Regge theory is an extremely rich subject in its own right, which
preoccupied high energy physicists for much of the decade prior to the formulation of QCD.
In this section we outline those aspects of Regge theory and resonance–Regge duality which
will help to illustrate the concept of duality as later applied to deep inelastic scattering.
More comprehensive discussions of Regge phenomenology can be found for example in the
classic book of Collins [4], or in the more recent account of Donnachie et al. [18]. A review
of duality in hadronic reactions can also be found in the report by Fukugita & Igi [19].

R(s)
jΣ=

j
αΣ (t)

R
s =

t

= =

FIG. 3. Dual descriptions of the scattering process, in terms of a sum over s-channel resonances

R(s), and in terms of t-channel Reggeon exchanges αj(t) (see text).
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1. Finite Energy Sum Rules

Consider the scattering of two spinless particles, described by the amplitude A(s, t),
where s and t are the standard Mandelstam variables. At low energies, it is convenient to
write the scattering amplitude as a partial wave series [4,20],

A(s, t) = 16π
∑

l

(2l + 1)Al(s) Pl(cos θs) , (50)

where θs is the s-channel center of mass scattering angle, and Al is the partial wave amplitude
of angular momentum l. (The generalization to non-zero intrinsic spin is straightforward,
with replacement of l by the total angular momentum J .) The elastic cross section is
proportional to |A(s, t)|2, and by the optical theorem the total cross section is related to the
imaginary part of the amplitude, σ ∼ ℑmA(s, t).

If the interaction forces are of finite range r, then for a given s only partial waves with
l <∼ r

√
s will be important in the sum. At low energies the partial wave amplitudes Al are

then dominated by just a few resonance poles, R,

Al(s) ≈
∑

R

gR

M2
R − s− iMRΓR

, (51)

where gR is the coupling strength, MR is the mass of the resonance and ΓR its width. As s
increases, however, the density of resonances in each partial wave, as well as the number of
partial waves which must be included in the sum (50), also increases, making it harder to
identify contributions from individual resonances. At high s it becomes more useful therefore
to describe the scattering amplitude in terms of a t-channel partial wave series, which can
be expressed as an integral over complex l via the Sommerfeld-Watson transformation [4].
This allows the amplitude to be written as a sum of t-channel Regge poles and cuts, which
at high energy leads to the well-known linear Regge trajectories,

A(s, t) ∼ sα(t) , s→ ∞ , (52)

where α(t) = α(0) + α′t. This implies that at large s, with t fixed, the total cross section
behaves as σ ∼ sα(0)−1. The trajectory α(t), which is characterized by the slope α′ and
intercept α(0), is shown in Fig. 4 in the so-called Chew-Frautschi plot [21] for several well-
established meson families. A remarkable feature is the near degeneracy of each of the ρ, ω,
f2 and a2 trajectories. Similar linearity is observed in the baryon trajectories.

While the s- and t-channel partial wave sums describe the low- and high-energy behaviors
of scattering amplitudes, respectively, an important question confronting hadron physicists
of the 1960s was how to merge these descriptions, especially at intermediate s, where the
amplitudes approach their smooth Regge asymptotic behavior, but some resonance struc-
tures still remain. More specifically, how do the s-channel resonances contribute to the
asymptotic s behavior, and where do these resonances appear in the Sommerfeld-Watson
representation?

Progress towards synthesizing the two descriptions came with the development of Fi-
nite Energy Sum Rules (FESRs), which are generalizations of superconvergence relations in
Regge theory [22] relating dispersion integrals over the amplitudes at low energies to high-
energy parameters. The formulation of FESRs stemmed from the sum rule of Igi [23], which
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FIG. 4. Chew-Frautschi plot for several degenerate meson families on the Regge trajectory

α(t) = 0.5 + 0.9 t. (From Ref. [18].)

used dispersion relations to express the crossing symmetric πN forward scattering amplitude
in terms of its high-energy behavior. An implicit assumption here is that beyond a suffi-
ciently large energy ν > ν̄, the scattering amplitude can be represented by its asymptotic
form, AIR, calculated within Regge theory [24]. The resulting sum rules relate functions of
the high-energy parameters to dispersion integrals which depend on the amplitude over a
finite range of energies.

Formally, the FESRs can be written as relations between (moments of) the imaginary
part of the scattering amplitude at finite energies and the asymptotic high energy amplitude
[4,18],

∫ ν̄

0
dν νn ℑm A(ν, t) =

∫ ν̄

0
dν νn ℑm AIR(ν, t) [FESR] (53)

where here ν is defined in terms of the Mandelstam variables as ν ≡ (s − u)/4, and the
integration includes the Born term. Assuming analyticity and Regge pole dominance for
ν ≥ ν̄, the integral over the Regge amplitude in Eq. (53) can be written in terms of the
Regge trajectories αj(t) and functions βj(t) characterizing the residues of the poles in the
complex-l plane,

∫ ν̄

0
dν νn ℑm AIR(ν, t) =

∑

j

βj(t) ν̄
αj(t)+n+1

(αj(t) + n + 1)Γ(αj(t) + 1)
, (54)

where Γ is the Euler gamma function. The FESRs (53) therefore encapsulate a duality be-
tween the s-channel resonance and t-channel Regge descriptions of the scattering amplitude,
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FIG. 5. Isovector πp cross section, pLab∆σ = pLab(σ
π+p − σπ−p), as a function of laboratory

momentum, pLab, compared with the Regge fit to high energy data (dotted line). (Adapted from

Refs. [18,23].)

as illustrated in Fig. 3. For the lowest moment, n = 0, Eq. (53) reduces to the dispersion
sum rule originally derived by Logunov et al. [25] and Igi & Matsuda [26].

For higher moments, the sum rules require a more local duality, A(ν, t) ≈ AIR(ν, t), and
are therefore less likely to work at low energies. Such local duality could only be expected
at very high s, where the density of resonances is large, and the bumps have been smoothed
out. Note that the equality of all the moments would require the amplitude at low ν to be
identical to AIR. Given that the former contains poles in s, whereas the latter does not, this
places some restrictions on how local the duality between the low and high energy behaviors
can be. Nevertheless, the sum rules (53) represent a powerful tool which allows one to use
experimental information on the low energy cross sections for the analysis of high energy
scattering, and to connect low energy parameters (such as resonance widths and coupling
strengths) to parameters describing the behavior of cross sections at high energies.

An important early application of FESRs was made for the case of πN scattering am-
plitudes. In their seminal analysis, Dolen, Horn & Schmid [27,28] observed that summing
over contributions of s-channel resonances yields a result which is approximately equal to
the leading (ρ) pole contribution obtained from fits to high energy data, extrapolated down
to low energies. This equivalence (or “bootstrap”, as it was referred to in the early litera-
ture) is illustrated in Fig. 5 for the total isovector πp scattering cross section. The data at
small laboratory momenta show pronounced resonant structure for pLab

<∼ 2–3 GeV, which
oscillates around the Regge fit to high energy data, with the amplitude of the oscillations
decreasing with increasing momenta. Averaging the resonance data over small energy ranges
thus exposes a semi-local duality between the s-channel resonances and the Regge fit.
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FIG. 6. Total π+p (left plot) and π−p (right plot) cross sections as a function of laboratory

momentum, pLab, compared with Regge fits to high energy data. (Adapted from Ref. [18].)

2. Veneziano Model and Two-Component Duality

With the phenomenological confirmation of duality in πN scattering, the quest was on
to find theoretical representations of the scattering amplitude which would satisfy the FESR
relations (53) and unify the low and high s behaviors. Such a representation was found to
be embodied in the Veneziano model [29,30]. Observing that the simplest function with an
infinite set of poles in the s-channel on a trajectory α(s) = integer (> 0) is Γ(1 − α(s)),
Veneziano proposed a solution to (53) of the form A(s, t) + A(s, u) + A(t, u), where

A(s, t) = g
Γ (1 − α(s)) Γ (1 − α(t))

Γ (2 − α(s) − α(t))
= g

∫ 1

0
dz zα(s)(1 − z)−α(t) , (55)

with g the constant strength. The amplitude (55) is manifestly analytic and crossing sym-
metric, having the same pole structure and Regge behavior in both the s and t channels.
It explicitly satisfies the FESRs and duality, and reproduces linear Regge trajectories. The
latter can be verified by using Stirling’s formula,

Γ(z) →
√

2π e−zzz−1/2 , z → ∞ , (56)

which yields, for fixed t,

A(s, t) → g
π(α′s)α(t)

Γ(α(t)) sin(πα(t))
e−iπα(t) ∼ (α′s)α(t) , (57)

where α(s) → α(0) + α′s at large s.
Much of the progress in applying the concept of duality in hadronic reactions was due to

the success of the Veneziano model, even though the model is now regarded more as a toy
model. One of the shortcomings of the Veneziano formula (55) is the presence of an infinite
set of zero-width resonances on the positive real s axis, which destroys the Regge behavior
on the real axis. Moreover, the solution (55) is not unique: the functions α(s), α(t) can be
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replaced by m− α(s), n− α(t) for any integer m,n, while still satisfying the FESRs. This
means that there are effectively no constraints on the resonance parameters without making
additional assumptions [18]. A number of attempts to alleviate some of these problems have
been made in the literature — see for instance Refs. [31–33]. Nevertheless, the Veneziano
amplitude does provide an explicit realization of duality, and in fact indirectly led to the
development of modern string theory (see Sec. VII).

The duality hypothesis embodied in the FESR (53) is of course incomplete: it does not
include Pomeron (IP) exchange. Pomeron exchange (exchange of vacuum quantum numbers)
was introduced in Regge theory to describe the behavior of cross sections at large s [4]. Since
the known mesons lie on Regge trajectories with intercepts αIR(0) < 1, from Eq. (52) the
resulting cross sections will obviously decrease with s. To obtain approximately constant
cross sections at large s requires an intercept αIP(0) ≈ 1. While there are no known mesons
on such a trajectory, the exchange of a Pomeron with vacuum quantum numbers (which
can be modeled in QCD through the exchange of two or more gluons) is introduced as an
effective description of the high-energy behavior of cross sections. The leading Reggeon-
exchange contributions (for instance due to ρ exchange) have intercept αIR(0) ≈ 0.5, and
are more important at smaller s.

Since it is even under charge conjugation, the IP-exchange contribution to the isovector
πp cross section in Fig. 5 cancels, thus exposing the duality between s-channel resonances
and the nondiffractive Reggeon t-channel exchanges. On the other hand, a comparison of
the individual π+p and π−p cross sections in Fig. 6 suggests that at low energies the cross
sections themselves on average display some degree of duality with the high-energy behavior.
In both cases the prominent resonances at pLab

<∼ 1 GeV oscillate around the high energy
fit extrapolated to these energies.

A generalization of the s- and t-channel duality to include contributions from both res-
onances and the nonresonant background upon which the resonances are superimposed was
suggested by Harari [34] and Freund [35]. In this “two-component duality”, resonances are
dual to the nondiffractive Regge pole exchanges, while the nonresonant background is dual
to Pomeron exchange [20],

A(s, t) =
∑

res

Ares(s, t) + Abkgd(s, t) (58)

=
∑

IR

AIR(s, t) + AIP(s, t) . (59)

The data on π±p scattering in Figs. 5 and 6 demonstrate as much: since both the non-
diffractive and total cross sections satisfy duality, then so must the diffractive, IP-exchange
component.

The practical utilization of duality and the FESRs was demonstrated recently by Igi and
Ishida [36] in a combined fit to both low- and high-energy total πp cross sections. While it
has been known for some time that the increase of total cross sections at high energy cannot
exceed the Froissart unitarity bound, σ ∼ log2 s [37], experimentally it has not been possible
to distinguish a log s behavior from a log2 s using high energy data alone [38]. Constraining
the fit by the averaged cross section data in the resonance region at low s, on the other hand,
as implied by the FESR (53), clearly favors the log2 s asymptotic behavior, as seen in Fig. 7
(solid curves). The log s fit (dashed curves) overestimates the data at

√
s ∼ 50–100 GeV,
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FIG. 7. Total π+p + π−p cross section (in mb) as a function of the center of mass energy
√
s

(in GeV). The left panel (
√
s on a logarithmic scale) emphasizes the resonance region, while the

right panel (linear scale) emphasizes the high energy region. The solid (dashed) lines represent fits

with a log2 s (log s) asymptotic behavior. (Adapted from Ref. [36].)

and cannot reproduce the observed rise in the cross section at
√
s >∼ 300 GeV, especially the

new data point at ∼ 600 GeV from the SELEX Collaboration at Fermilab [39].
Similar constraints have also been used by Block and Halzen [40] to fit the total photo-

production cross sections at high energy. By matching the high-s fit smoothly to the average
of the resonance data at

√
s ∼ 4 GeV, the results strongly favor a log2 s behavior at large s.

Furthermore, the evidence for the saturation of the Froissart bound in the γp cross section
is confirmed by applying the same analysis to πp data using vector meson dominance [40].

For the case of electroproduction, the two-component duality model has immediate ap-
plication in deep inelastic scattering, which we discuss in more detail in the next section.
In inclusive electroproduction from the nucleon the behavior of the cross sections at large
s ≡ W 2 = M2 + Q2(ω − 1), where ω = 2Mν/Q2, corresponds to the ω → ∞ behavior of
structure functions. Two-component duality therefore suggests a correspondence between
resonances and valence quarks, whose behavior at large ω ∼ s at fixed Q2 is given by poles
on the ρ meson Regge trajectory,

F val
2 (ω) ∼ ωαIR−1 , (60)

with the background dual to sea quarks or gluons, for which the large-ω behavior is deter-
mined by Pomeron exchange,

F sea
2 (ω) ∼ ωαIP−1 . (61)
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FIG. 8. Illustration of two-component duality in eN → eX: (top) duality between the nonres-

onant background and Pomeron (IP) exchange, thought to be associated with gluon exchange in

QCD; (bottom) duality between resonances and Reggeon (IR) exchange, corresponding to quark

exchange diagrams. (Adapted from Ref. [4].)

This is illustrated schematically in Fig. 8.
This duality imposes rather strong constraints on the production of resonances and on the

Q2 dependence of the γ∗N → N∗ transition form factors, as will be discussed below. In fact,
a dual model of deep inelastic scattering based on Regge calculus was developed by Landshoff
and Polkinghorne [41] to describe the early deep inelastic scattering data, in which duality
was introduced by identifying the contribution of exotic states to scattering amplitudes with
diffractive processes. More recently, dual models based on generalizations of the Veneziano
amplitude [42] to include Mandelstam analyticity [32] and nonlinear trajectories [43] have
been constructed [44,45] to relate structure functions at small and large ω.
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B. Duality In Inclusive Electron Scattering

The unique feature of inclusive electroproduction is that one can measure points at the
same ω = 1 + (W 2 −M2)/Q2 ≡ 1/x at different values of Q2 and W 2, both within and
outside the resonance region. Unlike in hadronic reactions, the fact that one can vary the
mass of the probe, Q2, means that duality here can be studied by directly measuring the
scaling function describing the high energy cross section which averages the resonances.

1. Bloom-Gilman Duality

By examining the early inclusive electron–proton scattering data from SLAC, Bloom and
Gilman observed [2,3] a remarkable connection between the structure function νW2(ν,Q

2)
in the nucleon resonance region and that in the deep inelastic continuum. The resonance
structure function was found to be equivalent on average to the deep inelastic one, with the
averages obtained over the same range in the scaling variable

ω′ =
2Mν +M2

Q2
= 1 +

W 2

Q2
= ω +

M2

Q2
. (62)

More generally, one can define ω′ = ω + m2/Q2, for some arbitrary mass m ∼ 1 GeV2,
although in practice the choice m = M was usually made in the early analyses. The range
of W over which the structure function exhibits scaling was found [46] to increase (from
down to W 2 ≈ 7 GeV2 to down to W 2 ≈ 3 GeV2) if νW2 were plotted as a function of
ω′ instead of ω. While the physical interpretation of this modified scaling variable was not
clear at the time, it did naturally allow for the direct comparison of data at higher W 2 to
data at lower W 2, over a range of Q2. Using the variable ω′, Bloom and Gilman were able
to make the first quantitative observations of quark-hadron duality in electron scattering.

The original data on the proton νW2(ν,Q
2) structure function in the resonance region

are illustrated in Fig. 9 for several values of Q2 from 0.75 GeV2 to 3 GeV2. This is a
characteristic inclusive electron–proton spectrum in the resonance region, where the almost
twenty well-established nucleon resonances with masses below 2 GeV give rise to three
distinct enhancements in the measured inclusive cross section. Of these, only the first is
due to a single resonance, the P33(1232) ∆ isobar, while the others are a composite of
overlapping states. The second resonance region, which comprises primarily the S11(1535)
and D13(1520) resonances, is generally referred to as the “S11” region due to the dominance
of this resonance at higher Q2. Since the data shown here are from inclusive measurements,
they may contain tails of higher mass resonances as well as some nonresonant components.
The νW2(ν,Q

2) structure function data were extracted from the measured cross sections
using a fixed value of the longitudinal to transverse cross section ratio, R = σL/σT = 0.18.

The scaling curve shown in Fig. 9 is a parameterization of the high-W (high-Q2) data
available in the early 1970s [46], when deep inelastic scattering was new and data compara-
tively scarce. Presented in this fashion, the resonance data are clearly seen to oscillate about,
and average to, the scaling curve. A more modern comparison would include in addition
the Q2 evolution of the structure function from perturbative QCD (as will be discussed in
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FIG. 9. Early proton νW2 structure function data in the resonance region, as a function of ω′,

compared to a smooth fit to the data in the scaling region at larger Q2. The resonance data were

obtained at the indicated kinematics, with Q2 in GeV2, for the longitudinal to transverse ratio

R = 0.18. (Adapted from Ref. [3].)

Sec. IV). Nevertheless, the astute observations made by Bloom and Gilman are still valid,
and may be summarized as follows:

I The resonance region data oscillate around the scaling curve.

II The resonance data are on average equivalent to the scaling curve.

III The resonance region data “slide” along the deep inelastic curve with increasing Q2.

These observations led Bloom and Gilman to make the far-reaching conclusion that “the
resonances are not a separate entity but are an intrinsic part of the scaling behavior of νW2”
[2].

In order to quantify these observations, Bloom & Gilman drew on the work on duality in
hadronic reactions to determine a FESR equating the integral over ν of νW2 in the resonance
region, to the integral over ω′ of the scaling function [2],

2M

Q2

∫ νm

0
dν νW2(ν,Q

2) =
∫ 1+W 2

m/Q2

1
dω′ νW2(ω

′) . (63)

Here the upper limit on the ν integration, νm = (W 2
m −M2 +Q2)/2M , corresponds to the

maximum value of ω′ = 1 +W 2
m/Q

2, where Wm ∼ 2 GeV, so that the integral of the scaling
function covers the same range in ω′ as the resonance region data. The FESR (63) allows
the area under the resonances in Fig. 9 to be compared to the area under the smooth curve
in the same ω′ region to determine the degree to which the resonance and scaling data are
equivalent. A comparison of both sides in Eq. (63) for Wm = 2 GeV showed that the relative
differences ranged from ∼ 10% at Q2 = 1 GeV2, to <∼ 2% beyond Q2 = 2 GeV2 [3], thus
demonstrating the near equivalence on average of the resonance and deep inelastic regimes
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(point II above). Using this approach, Bloom and Gilman’s quark-hadron duality was able
to qualitatively describe the data in the range 1 <∼ Q2 <∼ 10 GeV2.

Moreover, observation III implies a deep connection between the Q2 dependence of the
structure functions in the resonance and deep inelastic scattering regimes. The prominent
resonances in inclusive inelastic electron–proton scattering do not disappear with increasing
Q2 relative to the “background” underneath them (which scales), but instead fall at roughly
the same rate with increasing Q2. The prominent nucleon resonances are therefore strongly
correlated with the scaling behavior of νW2.

2. Duality in the Context of QCD

Following the initial SLAC experiments, inclusive deep inelastic scattering quickly be-
came the standard tool for investigating the quark substructure of nucleons and nuclei. The
development of QCD shortly after the discovery of Bloom-Gilman duality enabled a rigorous
description of structure function scaling and scaling violations at high Q2 and W . In the
Bjorken limit (Q2, ν → ∞, x = Q2/2Mν fixed), the asymptotic freedom property of QCD
reduces the structure function νW2 to a function of a single variable, νW2(ν,Q

2) → F2(x),
which is related to the parton distribution functions in the quark-parton model (see Sec. II).

At large but finite Q2, perturbative QCD (pQCD) predicts logarithmic Q2 scaling viola-
tions in F2, arising from gluon radiation and subsequent qq̄ pair creation. The observation
of scaling violations in F2 in fact played a crucial role in establishing QCD as the accepted
theory of the strong interactions. At low Q2, however, perturbative QCD breaks down,
and the description of structure functions in terms of single parton densities is no longer
applicable. Corrections which at high Q2 are suppressed as powers in 1/Q2 (such as those
arising from multi-parton correlations – see Sec. VA) can no longer be neglected.

A reanalysis of the resonance region and quark-hadron duality within QCD was per-
formed by De Rújula, Georgi and Politzer [5,6,47], who reinterpreted Bloom-Gilman duality

in terms of moments M
(n)
2 (Q2) of the F2 structure function, defined in Eq. (43) (or M

N(n)
2

in Eq. (44)). For n = 2 one recovers the analog of Eq. (63) by replacing the νW2 structure
function on the right hand side by the asymptotic structure function, F asy

2 (x), so that the
FESR can be written in terms of the moments as

M
(2)
2 (Q2) =

∫ 1

0
dx F asy

2 (x) . (64)

Since the moments are integrals over all x, at fixed Q2, they contain contributions from both
the deep inelastic continuum and resonance regions. At large Q2 the moments are saturated
by the former; at low Q2, however, they are dominated by the resonance contributions. One
may expect therefore a strong Q2 dependence in the low-Q2 moments arising from the 1/Q2

power behavior associated with the exclusive resonance channels. A comparison of the high-
Q2 moments with those at low Q2 then allows one to test the duality between the resonance
and scaling regimes.

Empirically, one observed only a slight difference, consistent with logarithmic scaling
behavior in Q2, between moments obtained at Q2 = 10 GeV2, and those at lower Q2,
Q2 ∼ 2 GeV2, that were dominated by resonances. This suggested that changes in the
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moments of the F2 structure function due to power corrections were small, and that averages
of F2 over a sufficiently large range in x were approximately the same at high and low Q2.
Duality would be expected to hold so long as the 1/Q2 scaling violations were small [6].

Note that at the energies where duality was observed the ratio M2/Q2 is not negligible.
Application of perturbative QCD requires not only that Q2 be large enough to make expan-
sions in αs(Q

2) meaningful, but also that Q2 be large compared to all relevant masses. Some
of the M2/Q2 effects are purely kinematical in origin, not associated with the dynamical
multi-parton effects that give rise to the 1/Q2 power behavior. The reason why the variable
ω′ is a better scaling variable than ω is that it partially compensates for the effects of the
target mass M2/Q2, allowing approximate scaling to be manifest down to lower Q2 values
(sometimes referred to as “precocious” scaling).

In QCD the target mass corrections may be included via the Nachtmann [12] scaling
variable (or generalizations including non-zero quark masses [15]), which are discussed along
with others in the Appendix. Georgi and Politzer [47] suggested that the use of the Nacht-
mann scaling variable ξ (as in Eq. (45)), rather than ω′ or x, would systematically absorb
all target mass corrections, and permit duality to remain valid to lower Q2. This was indeed
borne out by the proton νW2 structure function data, as displayed in Fig. 10 as a function of
ξ at Q2 = 1 GeV2. The Nachtmann variable is in fact the minimal variable which includes
target mass effects, and has been used widely in studies of structure functions at intermedi-
ate Q2 [17,48]. Further discussions on the use of the Nachtmann variable in moment analyses
can be found in Refs. [16,49–53].

The equivalence of the moments of structure functions at high Q2 with those in the
resonance-dominated region at low Q2 is usually referred to as “global duality”. If the
equivalence of the averaged resonance and scaling structure functions holds over restricted
regions in W , or even for individual resonances, a “local duality” is said to exist. Once the
inclusive–exclusive connection via local duality is taken seriously, one can in principle use
the measured inclusive structure functions at large Q2 and ξ, together with Q2 evolution, to
directly extract resonance transition form factors at lower values of Q2 over the same range
in ξ. As an extreme example, it is even possible to extract elastic form factors from the
inclusive inelastic data below the pion production threshold [5] to within ∼ 20% [6].

Bloom and Gilman’s observation that the νW2 structure function in the resonance region
tracks, with changing Q2, a curve whose shape is the same as the scaling limit curve is
expressly a manifestation of local duality, in that it occurs resonance by resonance. The
scaling F2 function becomes smaller at the larger values of the scaling variable, associated
with higher values of Q2. Therefore, the resonance transition form factors must decrease
correspondingly with Q2.

Carlson and Mukhopadhyay [54] quantified the pQCD expectations for the exclusive
resonance transition form factors, finding the leading behavior to be 1/Q4. They note that
pQCD further constrains the x → 1 behavior of the inclusive nucleon structure function,
νW p

2 ∼ (1−x)3 [55], as predicted also by dimensional scaling laws [56,57]. This is yet another
manifestation of the inclusive–exclusive relation arising from local Bloom-Gilman duality.
We shall discuss this and other phenomenological applications of local Bloom-Gilman duality
in Sec. VC.

Following this historic prelude, where we set in context the original observations of
duality in electron–nucleon scattering, we are now ready to explore in detail the modern
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FIG. 10. Proton νW2 structure function data at Q2 = 1 GeV2 in the resonance (curve with

oscillations) and deep inelastic (data points) regions as a function of the Nachtmann variable ξ.

The data are compared to a smooth curve at the same ξ values, representing the scaling function

from higher Q2 and x. The vertical arrow indicates the elastic point, x = 1. (Adapted from

Ref. [5].)
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phenomenology of Bloom-Gilman duality. In the next section we discuss the current exper-
imental status of duality in electron–nucleon scattering, and present an in-depth account of
available data for both spin-averaged and spin-dependent processes.
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IV. BLOOM-GILMAN DUALITY: EXPERIMENTAL STATUS

Bloom and Gilman’s initial discovery of the resonance–scaling relations in inclusive
electron–nucleon scattering was indeed quite remarkable, particularly given the relatively
poor statistics and limited coverage of the early data. As higher energy accelerated beams
became increasingly available in the 1970s and 1980s, focus naturally shifted to higher Q2

with experimental efforts geared towards investigating the predictions of perturbative QCD.
This was of course a necessary step in order to establish whether QCD itself was capable
of describing hadronic substructure in regions where the applicability of perturbative treat-
ments was not in doubt. More recently, however, there has been a growing realization that
understanding of the resonance region in inelastic scattering, and the interplay between res-
onances and scaling in particular, represents a critical gap which must be filled if one is to
fully fathom the nature of the quark–hadron transition in QCD.

The availability of high luminosity (polarized) beams, together with polarized targets,
has allowed one to revisit Bloom-Gilman duality at a much more quantitative level than
previously possible, and an impressive amount of data, of unprecedented quantity and qual-
ity, has now been compiled in the resonance region and beyond. In this section we review
the recent data on various spin-averaged and spin-dependent structure functions, together
with their moments, which have been instrumental in deepening our understanding of the
resonance–scaling transition.

A. Duality in the F2 Structure Function

Much of the new data have been collected in inclusive electron scattering on the proton.
At high Q2, the differential cross section given in Eq. (13) is usually expressed in terms of
the F2 structure function, because of the elegant interpretation which F2 has in the parton
model (in terms of quark momentum distributions), and the crucial role it played in under-
standing scaling violations in QCD. Since the original observations of Bloom-Gilman duality
in inclusive structure functions, F2(x,Q

2) has become one of the best measured quantities
in lepton scattering, with measurements from laboratories around the world contributing to
a global data set spanning over five orders of magnitude in x and Q2.

Here we first present F2 data of particular interest to duality studies, both on the proton
and on nuclear targets, and then turn to the extraction of the purely longitudinal and
transverse structure functions, FL and F1, respectively, in Sec. IVB. While it is clear that
longitudinal–transverse separated data are necessary to accurately extract F2 from measured
cross sections, we have chosen here to present F2 results because of the historical significance
of this structure function both in Bloom & Gilman’s original work, and also as the most
widely measured quantity in deep inelastic scattering over the past three decades.

1. Local Duality for the Proton

A sample of proton F p
2 structure function data from Jefferson Lab [7,58] in the resonance

region is depicted in Fig. 11, where it is compared with fits to a large data set of higher-
W and Q2 data from the New Muon Collaboration [59]. Figure 11 is in direct analogy to
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FIG. 11. Proton νW p
2 = F p

2 structure function data in the resonance region as a function of ξ,

at Q2 = 0.45, 0.85, 1.70, and 3.30 GeV2 from Hall C at Jefferson Lab [7,58]. The arrows indicate

the elastic point, ξ = ξ(x = 1). The curves represent fits to deep inelastic structure function data

at the same ξ but higher (W 2, Q2) from NMC [59] at Q2 = 5 GeV2 (dashed) and Q2 = 10 GeV2

(solid).

Fig. 10 above, where the Nachtmann variable ξ has replaced the more ad hoc variable ω′ as
a means to relate high-(W 2, Q2) deep inelastic data to data at the lower (W 2, Q2) values of
the resonance region, as well as to include proton target mass corrections. Both the ξ and
ω′ variables depend on ratios of x to Q2 (or, correspondingly, W to Q2), thereby allowing
direct comparison of structure functions in the resonance and scaling regimes by plotting the
scaling and resonance data at the same ordinate point. For example, ξ = 0.6 can correspond
to a point in the ∆ resonance region around Q2 = 1.5 GeV2, or a point in the deep inelastic
region of W 2 = 14 GeV2 at Q2 = 20 GeV2.

The kinematics for the resonance data in Fig. 11 range from the single pion production
threshold to W 2 = 5 GeV2. The elastic peak position at ξ = ξ(x = 1) is indicated by the
vertical arrows, and the lower ξ values correspond to the higher-W 2 kinematics. Of the
three prominent enhancements, the lowest mass ∆ resonance falls at the highest ξ values.
The statistical uncertainties are included in the error bars on the data points, and the total
systematic uncertainty was estimated to be less than 4% [7]. The latter includes some
uncertainty associated with the choice of R used to extract F2 from the measured cross
sections (see Eq. (20)).

The resonance data are compared to a global fit curve to deep inelastic scattering (DIS)
data from Ref. [59], here shown for two fixed values of Q2 = 5 and 10 GeV2. The curves
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FIG. 12. Proton νW p
2 = F p

2 structure function data from SLAC and Jefferson Lab in the

resonance region in the range 0.06 < Q2 < 3.30 GeV2, as indicated. The solid curve is a fit to deep

inelastic data at the same ξ but higher (W 2, Q2) from Ref. [59], shown here at Q2 = 5 GeV2.

are plotted at these fixed Q2 (somewhat higher than the resonance region data) and the ξ
values corresponding to those of the resonance region data. This (ξ, Q2) choice kinematically
determines the x and W 2 values in the DIS regime, and therefore establishes the (x,Q2)
values at which to utilize the DIS parameterization. It is important to note that this causes
an effective target mass correction to the scaling curve, which can increase the structure
function strength by tens of percent.

Several important features are worth noting in Fig. 11. Firstly, the data clearly display
the signature oscillations around the DIS curve, qualitatively averaging to it. Quantitatively,
scaling curves were found to describe the average of the resonance region F p

2 spectra in
Refs. [7,58] to better than 10%. Next, the resonance data closely follow the scaling curves
to higher ξ as Q2 increases, such that the ξ shape of the DIS curve determines the Q2

dependence of the resonance region structure function. Put figuratively, the resonances
slide down the scaling curve with increasing Q2. In all, the current precision resonance and
DIS data conclusively verify the original observations of Bloom & Gilman.

The Q2 dependence of the scaling structure function is not drastic, as the Q2 = 5 and
10 GeV2 values of the structure function are quite similar. However, the Q2 dependence
of F p

2 in the resonance region is significant, as can be seen in the difference between the
Q2 = 0.45 and 3.3 GeV2 spectra. Knowledge of the Q2 dependence of the scaling structure
function is an important improvement over the original data sets available to Bloom &
Gilman [2,3].

The same data set, combined with some lower Q2 data from SLAC, is depicted in Fig. 12
in a single plot. Here, the salient features of duality are even more striking: above ξ ∼ 0.2 the
data all average to the scaling curve. Moreover, the position of the resonance peaks relative
to the scaling curve is determined by Q2, with the higher Q2 values at higher ξ. Therefore,
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FIG. 13. Proton F2 structure function in the ∆ (top) and S11 (bottom) resonance regions from

Jefferson Lab Hall C, compared with the scaling curve from Ref. [7]. The resonances move to

higher ξ with increasing Q2, which ranges from ∼ 0.5 GeV2 (smallest ξ values) to ∼ 4.5 GeV2

(largest ξ values).

both the size and momentum dependence of the resonance region structure function are
apparently determined by the scaling limit curve. The lower-Q2 data (below ξ ∼ 0.2) will
be discussed in more detail in Sec. VA3, below. We note, however, that it may not be
surprising that the scaling curve at higher Q2 deviates from the resonance region data in
this lower ξ (or x) range, since here sea quark effects are large and vary rapidly with Q62.

Analyses such as this demonstrate a global duality for the entire resonance regime. How-
ever, one can observe in Figs. 11 and 12 that the average strength of the individual resonance
structures is also consistent with that of the scaling curve. This “local” duality is more ev-
ident in Fig. 13, wher the F p

2 structure function for the first (P33(1232) or ∆) and second
(S11(1535)) resonance regions from Fig. 11 are plotted versus ξ for Q2 values from 0.5 GeV2

to 4.5 GeV2. The sliding of the individual ∆ and S11 resonance regions along the scaling
curve is dramatically illustrated here, where the resonances are clearly seen to move up in ξ
with increasing Q2. One observes therefore that the Q2 behavior of the resonances is deter-
mined by the position on the ξ scaling curve on which they fall. The resonance contributions
to F p

2 track, with changing Q2, a curve whose shape is the same as the scaling limit curve.
Note, however, that it is always necessary to average the resonance data over some region
for local duality to hold. For example, the data point at the maximum of the resonance
peak will stay above, and never equal, the scaling strength. In other words, local duality
has a limit — a point which we shall return to again.

The classic presentation of duality in electron–proton scattering, as depicted in Figs. 11
and 12, is somewhat ambiguous in that resonance data at low Q2 values are being compared
to scaling curves at higher Q2 values. It is difficult to evaluate precisely the equivalence of
the two if Q2 evolution [60] is not taken into account. Furthermore, the resonance data and
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scaling curves, although at the same ξ or ω′, are at different x and sensitive therefore to
different parton distributions. A more stringent test of the scaling behavior of the resonances
would compare the resonance data with fundamental scaling predictions for the same low-Q2,
high-x values as the data.

Such predictions are now commonly available from several groups around the world, for
instance, the Coordinated Theoretical-Experimental Project on QCD (CTEQ) [61]; Mar-
tin, Roberts, Stirling, and Thorne (MRST) [62]; Gluck, Reya, and Vogt (GRV) [63]; and
Blümlein and Böttcher [64], to name a few. These groups provide results from global QCD
fits to a full range of hard scattering processes — including lepton-nucleon deep inelastic
scattering, prompt photon production, Drell-Yan measurements, jet production, etc. — to
extract quark and gluon distribution functions (PDFs) for the proton. The idea of such
global fitting efforts is to adjust the fundamental PDFs to bring theory and experiment into
agreement for a wide range of processes. These PDF-based analyses include pQCD radiative
corrections which give rise to logarithmic Q2 dependence of the structure function. In this
report, we use parameterizations from all of these groups, choosing in each case the most
straightforward implementation for our needs. It is not expected that this choice affects any
of the results presented here.

Comparison of resonance region data with PDF-based global fits allows the resonance–
scaling comparison to be made at the same values of (x,Q2), making the experimental
signature of duality less ambiguous. Such a comparison is presented in Fig. 14 for F p

2 data
from Jefferson Lab experiment E94-110 [65,66], with the data bin-centered to the values
Q2 = 1.5, 2.5 and 3.5 GeV2 indicated. These F p

2 data are from an experiment capable of
performing longitudinal/transverse cross section separations, and so are even more precise
than those shown in Figs. 11–13.

The smooth curves in Fig. 14 are the perturbative QCD fits from the MRST [67] and
CTEQ [68] collaborations, evaluated at the same Q2 values as the data. These are shown
with target mass (TM) corrections included, which are calculated according to the pre-
scription of Barbieri et al [16]. The SLAC curve is a fit to deep inelastic scattering data
[69], which implicitly includes target mass effects inherent in the actual data. The target
mass corrected pQCD curves appear to describe, on average, the resonance strength at each
Q2 value. Moreover, this is true for all of the Q2 values shown, indicating that the reso-
nance averages must be following the same perturbative Q2 evolution [60] which governs the
pQCD parameterizations (MRST and CTEQ). This demonstrates even more emphatically
the striking duality between the nominally highly-nonperturbative resonance region and the
perturbative scaling behavior.

An alternate approach to quantifying the observation that the resonances average to
the scaling curve has been used recently by Alekhin [70]. Here the differences between
the resonance structure function values and those of the scaling curve, ∆F p

2 , are used to
demonstrate duality, as shown in Fig. 15, where the differences are seen to oscillate around
zero. Integrating ∆F p

2 over the resonance region, the resonance and scaling regimes are found
to be within 3% in all cases above Q2 = 1 GeV2 [71]. One should note that in Ref. [70] a
different set of PDFs was employed, extracted only from DIS scattering data.

Equivalently, quark-hadron duality can also be quantified by computing integrals of the
structure function over x in the resonance region at fixed Q2 values,
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FIG. 14. Proton F p
2 structure function in the resonance region for several values of Q2, as

indicated. Data from Jefferson Lab Hall C [65,66] are compared with some recent parameterizations

of the deep inelastic data at the same Q2 values (see text).
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FIG. 15. The difference ∆F p
2 between proton F p

2 structure function data (at the indicated

kinematics) from Jefferson Lab Hall C and the scaling curve of Ref. [70] as a function of missing mass

W . The integrated difference yields a value of –0.0012 ± 0.0066 for this particular W -spectrum.

∫ xres

xth

dx F p
2 (x,Q2) , (65)

where xth corresponds to the pion production threshold at the fixed Q2, and xres =
Q2/(W 2

res−M2 +Q2) indicates the x value at that same Q2 where the traditional delineation
between the resonance and deep inelastic scattering regions at W = Wres ≡ 2 GeV falls.
These integrals may then be compared to the analogous integrals of the “scaling” structure
function at the same Q2 and over the same range of x.

The ratios of the integrals (65) of the resonance data to the scaling structure functions,
extrapolated to the same x, are shown in Fig. 16 for the proton F p

2 structure function, as well
as for the F p

1 , F p
L, and Rp structure functions discussed in Sec. IVB below. The perturbative

strength is calculated in one case from the MRST parameterization [67], with the target
mass corrections applied following Ref. [16], and in the other from a parameterization of
SLAC deep inelastic data [69]. In most cases, the integrated perturbative strength is
equivalent to the resonance region strength to better than 5% above Q2 = 1 GeV2. This
shows unambiguously that duality is holding quite well on average in all of the unpolarized
structure functions; the total resonance strength over a range in x is equivalent to the
perturbative, PDF-based prediction.

Of some concern is the seeming deviation from this observation in the MRST ratio at the
highest values of Q2 in Fig. 16, where the ratio rises above unity. This rise is not a violation
of duality, but rather is most likely due to an underestimation of large-x strength in the
pQCD parameterizations. Higher Q2 corresponds to large x here and, for comparison with
resonance region data at the larger Q2 values, accurate predictions at large x are crucial.
There exists uncertainty in the PDFs at large x, largely due to the ambiguity in the d/u
quark distribution function ratio beyond x ∼ 0.5, which arises from the model dependence
of the nuclear corrections when extracting neutron structure information from deuterium

36



FIG. 16. Ratios of the resonance to scaling integrals of the proton structure functions F p
2 , F p

L,

2xF p
1 , and Rp integrated over x. The integration limits are defined by the pion threshold at the

highest x, and by W = 2 GeV at the lowest x, for the Q2 values of the resonance data. The scaling

functions in the ratios are the SLAC parameterization [69] (squares) and the target mass corrected

MRST fit [67] (triangles) at the same (x,Q2) values.
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FIG. 17. A comparison of the duality-averaged deuteron F d
2 scaling curve determined from the

nucleon resonance region data, multiplied by 18/5, with the CDHSW data [76] on the deuteron

xF d
3 structure function obtained from deep inelastic neutrino–iron scattering data.

data (see Refs. [72–75]). Even if nominally deep inelastic data at higher W 2 and Q2, rather
than resonance region data, are compared to the available pQCD parameterizations, the
scaling curves do not show enough strength at large x (x >∼ 0.5) and fall uniformly below
the data points.

If one assumes duality, it is also possible to obtain a scaling curve by averaging the
resonance region data. Here, average values may be calculated for discrete data bins in ξ. A
fit to these averages has been obtained by Niculescu et al. [7], who found that the resonances
oscillate around the fit to within 10%, even down to Q2 values as low as 0.5 GeV2. These
lower Q2 values are below ξ = 0.2 in Fig. 11, where the resonance data fall below the
Q2 = 10 GeV2 scaling curve.

The scaling curve obtained for the deuteron F d
2 structure function by averaging the

resonance data is shown as a band in Fig. 17, to indicate the relevant uncertainty. This
average curve is in good agreement with extrapolations from deep inelastic scattering above
Q2 ∼ 1.5 GeV2, and also represents a smooth average of the resonance data even at lower Q2

and x values. Note that this curve does not account for the Q2 evolution of the resonance
region, having been obtained from a fit to average resonance region data spanning a range
of values in Q2 within a finite-ξ bin. However, the evolution in the range of the Jefferson
Lab data (0.5 < Q2 < 4.5 GeV2) is not expected to be large.

When viewed over the entire range in x, including at low x and Q2, the duality-averaged
curve yields a clear valence-like shape, which is in qualitative agreement with the neu-
trino/antineutrino data on the valence xF3 structure function. To enable a direct compari-
son, the Jefferson Lab average scaling curve has been multiplied by a factor 18/5 to account
for the quark charges, and a neutron excess correction has been applied to the xF3 data to
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obtain neutrino-deuterium data [77]. The xF3 structure function, which is typically accessed
in deep inelastic neutrino-iron scattering [76,78,79], is associated with the parity-violating
term in the hadronic current and is odd under charge conjugation. In the quark-parton
model it is therefore expressed as a difference between quark and antiquark distributions,
as in Eq. (28). This suggests a unique sensitivity of the duality-averaged F2 data [58] to
valence quarks.

Although the agreement between the averaged F2 scaling curve in the resonance region
and the deep inelastic neutrino xF3 data is not perfect, the similarity is compelling. The
observation by Bloom & Gilman that there may be a common origin for the electroproduction
of resonances and deep inelastic scattering seems to be true, even at the lowest values of Q2,
if one assumes a sensitivity to a valence-like quark distribution only. We shall discuss the
possible origin of the valence-like behavior of F2 at low Q2 in Sec. VA3.

2. Low Q2 Moments

The commonly accepted, QCD-based formulation of duality [5,6] relates the moments of
structure functions at high Q2, where deep inelastic phenomena make the primary contri-
bution, to the low-Q2 moments, which are dominated by contributions from the resonance
region. The Q2 dependence of the moments between the two regions is expected to reflect
both perturbative evolution [60], associated with single quark scattering, and the 1/Q power
behavior arising from interactions between the struck quark and the remaining “spectator”
quarks in the nucleon. This formulation is discussed in detail in Secs. III B 2 and VA, where
duality is expressed in terms of the operator product expansion in QCD. For the purposes
of this section, it is sufficient to note that the experimental observation of duality is related
to the fact that the 1/Q multiparton contributions to the F2 moments are small or canceling
on average, even in the low Q2 region where they should become increasingly important.
Conversely, deviations from duality would attest to the presence of significant multiparton
effects.

Duality expressed in terms of moments is demonstrated most incontrovertibly by ex-
tending the integration limits of the duality integrals in (65) to include the entire x range
0 ≤ x ≤ 1. In this case, the duality integral (65) becomes the n = 2 (Cornwall-Norton)
moment of the F2 structure function, given in Eq. (43).

To construct the moments accurately, data covering a large range in x must be available
at each fixed value of Q2 so as to minimize uncertainties associated with small-x and other
kinematic extrapolations. Figure 18 illustrates a compilation of global F p

2 data over several
orders of magnitude in x, for values of Q2 between 0.1 GeV2 and 3.1 GeV2 [80]. Resonance
region data from Jefferson Lab are indicated by the stars at large x. These are the same data
depicted in Figs. 11–13. Data at higherW from SLAC, NMC, Fermilab and HERA are shown
at smaller x for the same Q2 values. Such an extensive combined global data set facilitates
the extraction of unpolarized structure function moments with minimal uncertainties. Also
shown in the top two panels are curves representing the structure function calculated from
PDF parameterizations by the GRV group [81], evolved fromQ2 = 0.4 GeV2 to the respective
values indicated. The central solid curve in the third panel represents the input parton
distribution at Q2 = 0.4 GeV2. The two outer curves in the bottom two panels represent
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FIG. 18. Global data on the proton F p
2 structure function versus x at four values of Q2 (note the

logarithmic x scale). The solid curves in the top two panels represent F p
2 calculated from parton dis-

tribution function parameterizations by the GRV collaboration [81], evolved from Q2 = 0.4 GeV2.

The central (black) solid curve in the third panel represents the distribution at Q2 = 0.4 GeV2.

The two outer (red) curves in the bottom two panels represent the uncertainty range of the duality

averaged curve discussed in Sec. IVA1. (Adapted from Ref. [80].)

the average scaling curve from the Jefferson Lab data, encompassing its uncertainty band,
as discussed in Sec. IVA1. It is interesting to note that, while there is a dramatic Q2

dependence at low x associated with the collapse of the nucleon sea, there is very little Q2

dependence evident in this range at large x. It has been suggested [82] that large-x evolution
may require a modification of the usual Q2 evolution equations [60] (which assume massless,
on-shell quarks) to take into account the fact that quarks at large x are highly off-shell.

The n = 2, 4, 6 and 8 moments of F p
2 , constructed from the global data set in Fig. 18, are

shown in Fig. 19. The upper panel shows the Cornwall-Norton moments, while the lower
panel shows for comparison the moments calculated in terms of the Nachtmann variable ξ.
The total experimental uncertainty in the constructed moments is estimated to be less than
5%.

Note that each of the moments necessarily includes the elastic contribution at x = 1,
which dominates the moments at the lowest Q2 values. To demonstrate this, the elastic
contributions are shown as solid curves in Fig. 19. To include the elastic contribution, we
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FIG. 19. Moments of the proton F p
2 structure function (upper panel: Cornwall-Norton, lower

panel: Nachtmann) extracted from the world’s electron-proton scattering data, for n = 2, 4, 6 and

8 (top to bottom on each plot). The elastic contributions are indicated by the solid lines. The

low-Q2 (< 4.3 GeV2) moments (stars) are constructed directly from the data, while the larger-Q2

moments (dotted lines) are extracted from global fits to the nucleon elastic, resonance, and deep

inelastic regions.

use a fit to the world’s global data set compiled in Ref. [83]. Note that the Cornwall-Norton
moments will become unity (the proton charge squared) at Q2 = 0, as expected from the
Coulomb sum rule. The Nachtmann moments, however, vanish at Q2 = 0 since (in the
absence of quark mass scales) ξ/x vanishes in this limit.

Although below Q2 ∼ 1 GeV2 there is a more rapid variation of the moments with Q2, the
lowest (n = 2) moment is very weakly Q2 dependent beyond Q2 ≈ 1 GeV2, while the higher
moments reach a similar plateau at correspondingly larger Q2. This observed shallow Q2

dependence in Fig. 19 is consistent with the slowly varying logarithmic behavior associated
with the perturbative, PDF-based predictions. In the Nachtmann moments, which take into
account an additional Q2 dependence due to target mass effects, even the higher moments
display a weak Q2 dependence at low Q2 values (Q2 ∼ 2 GeV2).

Without the elastic contribution, which is a highly nonperturbative, coherent effect and
behaves as ∼ 1/Q8 at high Q2, both the Cornwall-Norton and Nachtmann moments for low
n are nearly constant down to Q2 ∼ 0.5 GeV2. This suggests that the inelastic part of the
moments may resemble the high-Q2, scaling moments and exhibit duality at lower Q2.
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The relative strength of the W 2 < 4 GeV2 region(s) is illustrated in Fig. 20 for the n = 2,
4, 6 and 8 (Cornwall-Norton) moments for Q2 < 5 GeV2. The moments are separated
into the elastic contribution (squares); the contribution of the N − ∆ transition region,
1.2 < W 2 < 1.9 GeV2 (triangles); the second resonance region, 1.9 < W 2 < 2.5 GeV2 (open
circles); and the deep inelastic contribution, W 2 > 4 GeV2 (stars). The total moment is
indicated by the filled circles. The vertical scale is chosen to enhance the individual region
contributions, so that the total moment is sometimes only visible at higher Q2. The lines
connecting the data points are to guide the eye.

The elastic contribution dominates the moments at low Q2, saturating the integrals near
Q2 = 0, but falls off rapidly at larger Q2. As Q2 increases from zero the contributions from
the inelastic, finite-W 2 regions increase and compensate some of the loss of strength of the
elastic. At larger Q2 these also begin to fall off. On the other hand, the contribution of
the W 2 > 4 GeV2 region does not die off. Since this contribution is not bound from above,
higher-W 2 resonances and the inelastic nonresonant background start becoming important
with increasing Q2, eventually yielding approximately the logarithmic Q2 scaling behavior
of the moments prescribed by pQCD [60].

As evidenced by the difference between the W 2 > 4 GeV2 data and the total moments,
the contribution of the traditionally defined resonance region (W < 2 GeV) is non-negligible
up toQ2 ≈ 5 GeV2. Considering n = 4 in Fig. 20 (b), for example, the difference between the
total and deep inelastic curves leaves about a 30% contribution to the moment at Q2 = 4.5
GeV2 coming from the resonance region. In Fig. 19, the n = 4 moment at this Q2 nonetheless
exhibits a largely perturbative behavior. The significance of the resonance contributions to
the moments and their corresponding Q2 behavior will be discussed in more detail in Sec. VA
in the context of the twist expansion.

3. Duality in Nuclei and the EMC Effect

While most of the recent duality studies have focused on the proton, there have been
measurements on deuterium and heavy nuclei in the high-x and low- to moderate-Q2 region
[84–86] which have also revealed additional information about duality. Inclusive electron–
nucleus experiments at SLAC designed to probe the x > 1 region in the FA

2 structure
function concluded that the data began to display scaling indicative of local duality [86],
while citing the need for larger ξ data for verification.

This was studied further at Jefferson Lab, and Fig. 21 is a sample plot from these newer
duality studies. Here, FA

2 /A for iron is plotted as a function of ξ [84]. The first thing to
note is that the smearing caused by nucleon Fermi motion causes the visible resonance mass
structure clearly observable for the free nucleon, and even the quasi-elastic peak, to vanish.
Once the resonance structure is washed out, scaling is observed at all ξ, and it is impossible
to differentiate the DIS and resonance regimes other than by calculating kinematics. Other
than at the lowest Q2 values, the data at all ξ fall on a common, smooth scaling curve. As
in Fig. 11, any Q2 dependence of the scaling curve should not be large here. In this nuclear
ξ scaling duality can be observed even more dramatically than for the proton: rather than
appearing as a local agreement on average between deep inelastic and resonance data, scaling
in nuclear structure functions in the resonance region is directly observed at all values of ξ
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without averaging.
Because nucleons in the deuteron have the smallest Fermi momentum of all nuclei, ξ

scaling is not expected to work in deuterium as well as in heavier nuclei at low W 2 and
Q2. However, ξ scaling is observed even in deuterium at extremely low values of W 2 and
relatively low momentum transfers. For Q2 ≥ 3 GeV2, the resonance structure is completely
washed out, so that even the most prominent ∆ resonance is no longer visible.

A compilation of recent F2 structure function data above W 2 = 1.2 GeV2 is shown in
Fig. 22 for hydrogen, deuterium, and iron as a function of ξ, for a variety of momentum
transfers ranging from Q2 = 0.5 GeV2 at low ξ to Q2 = 7 GeV2 at the higher ξ values. Also
shown is the F2 scaling curve for the nucleon (from the GRV parameterization [81]), corrected
for the known nuclear medium modifications to the structure function. For the proton, the
resonance structure is clearly visible and F2 is seen to oscillate around the scaling curve. For
deuterium, and even more so for iron, the resonances become less pronounced, being washed
out by the Fermi motion of the nucleons inside the nucleus. The prominent peak present
in the deuterium data in Fig. 22 (center panel) corresponds to the ∆ resonance. This peak
follows the scaling curve as for the proton, but the other resonance peaks are smeared so
much as to be indistinguishable from the scaling structure function. For heavier nuclei, even
the quasi-elastic peak is washed out by the smearing at higher Q2, and scaling is seen at
all values of ξ. Here the resonance region is essentially indistinguishable from the scaling
regime.

The same observation can also be made from Fig. 23, which shows the deuteron F d
2 struc-

ture function as a function of Q2, for several values of ξ. The dashed lines are d lnF d
2 /d lnQ2

fits to higher-Q2 data, and the solid lines indicate the boundaries at W 2 = 2 and 4 GeV2.
Essentially all the data, both above and below W 2 = 4 GeV2, lie on the perturbative curves,
making it practically impossible to distinguish between the hadronic and partonic regimes.
Deviations appear only at very low Q2, Q2 ∼ 1–2 GeV2, where the quasi-elastic peaks
become visible.

The limited kinematic coverage of the available nuclear resonance region data, combined
with the uncertainty in modeling nuclear effects at large x, does not yet permit precision
duality studies at the level of those that have been done for the proton. However, interesting
studies have been performed with the existing data to test the practicality of using duality-
averaged scaling to access high-x nucleon structure. Rather than comparing the nuclear
structure functions in the resonance region to deep inelastic parameterizations at low Q2,
as in Fig. 23, the nuclear dependence in the resonance region has been compared directly to
measurements made in the DIS regime.

Figure 24 depicts the ratio of nuclear to deuteron cross sections per nucleon for carbon,
iron, and gold, corrected for non-isoscalarity effects [87]. The characteristic ξ dependence
of the ratio σFe/σd ≈ F Fe

2 /F d
2 , namely a dip at ξ ∼ 0.6–0.7 and a rapid rise above unity for

ξ >∼ 0.8 (known as the “EMC effect”), has been well-established from many deep inelastic
measurements [88] and has been interpreted in terms of a nuclear medium modification of
the nucleon structure function. The unique feature of the plot, however, is the additional
inclusion of resonance region data from Jefferson Lab.

Qualitatively, the nuclear effects in the resonance region appear to be similar to those in
the deep inelastic region. This is somewhat surprising, since the nuclear dependence of the
scaling structure functions is not at all expected to be the same as the nuclear dependence of
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resonance production. While nuclear medium modifications of proton form factors has been
observed (in polarization transfer measurements of the elastic proton Gp

E/G
p
M form factor

ratio, for instance [89,90]), there is a priori no reason why these modifications would be the
same as those for structure functions measured in deep inelastic scattering. On the other
hand, this may be viewed as another consequence of quark-hadron duality. In Sec. VC1 we
explore some consequences of local duality in relating the nuclear medium modifications of
structure functions at large x and electromagnetic form factors.

B. Longitudinal and Transverse Cross Sections

In the preceding section we have shown that duality has been clearly established in the F2

structure function, both locally as a function of x (or ξ), and globally in terms of moments.
From its definition, however, the F2 structure function contains contributions from scattering
of both longitudinal and transverse photons. The question then arises of whether, and to
what extent, duality holds in either or both of the longitudinal and transverse channels
separately.

The extraction of the F2 structure function from cross section data can only proceed
with some input for the ratio R of the longitudinal to transverse cross sections. At high Q2

the scattering of longitudinal photons from spin-1/2 quarks is suppressed, and one expects
R → 0 as Q2 → ∞. At low Q2, however, R is no longer suppressed, and could be sizable,
especially in the resonance region and at large x. A model-independent determination of
unpolarized structure functions from inclusive cross section data requires, therefore, precision
longitudinal/transverse (LT) separations to simultaneously extract F2 and R, or equivalently
F1 and the longitudinal structure function, FL, as in Eqs. (14)–(23).

Until recently very little data on R existed in the region of the resonances, rendering
reliable LT separations impossible. The few measurements that existed below Q2 = 8 GeV2

in this region yielded R in the range −0.1 <∼ R <∼ 0.4, and had typical errors of 100% or more.
New precision measurements of proton cross sections at Jefferson Lab [65] have allowed for
the first time detailed duality studies in all of the unpolarized structure functions and their
moments.

1. Duality in the Separated Structure Functions

Within the framework of the naive parton model with free, massless spin-1/2 quarks,
the F1 and F2 structure functions are related via the Callan-Gross relation [10], Eq. (12),
and the longitudinal to transverse cross section ratio R is zero. By allowing quarks to have
an intrinsic transverse momentum kT , and a non-zero mass mq, the value of R is no longer
zero, and is given by R = 4(m2

q + k2
T )/Q2 [91]. Furthermore, the inclusion of hard gluon

bremsstrahlung and photon-gluon interactions also contributes to R by generating additional
transverse momentum kT [92–94]. In leading order pQCD, the contribution to R from gluon
radiation varies as the strong coupling constant, αs, R ∼ 1/ lnQ2. Because the pQCD
contributions to R are quite small, the 1/Q2 power corrections, which are nonperturbative
in origin, are expected to play a significant, if not dominant, role at low Q2. Since the
latter are not directly calculable, precision measurements of R, or equivalently, accurate
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LT-separated structure functions, are crucial to observing duality in the moderate to low-Q2

regime.
It has been reported in Ref. [95] that R measured at intermediate Q2 in the DIS region

[96–98] is significantly higher than the next-to-leading-order pQCD predictions, even with
the inclusion of corrections due to target mass effects. This enhanced strength inR relative to
pQCD was argued to be evidence for dynamical “higher twist” effects [95,98] (see Sec. VA).
Quark-hadron duality would suggest, on the other hand, that even in the resonance region
nonperturbative, 1/Q2 effects would be small for Q2 as low as 1 GeV2 when the structure
function is averaged over any of the prominent resonance regions. The separated structure
functions, therefore, are particularly interesting quantities for duality studies.

New data from Jefferson Lab experiment E94-110 on the separated proton transverse
(F p

1 ) and longitudinal (F p
L) structure functions in the resonance region are shown in Figs. 25

and 26, respectively [66]. LT-separated data from SLAC, which are predominantly in the
DIS region, are also shown for comparison [95,98]. Where coincident, the Jefferson Lab
and SLAC data are in excellent agreement, providing confidence in the achievement of the
demanding precision required of this type of experiment. In all cases, it is also interesting
to note that the resonance and DIS data smoothly move toward one another in both x and
Q2.

The curves in Figs. 25 and 26 are from Alekhin’s next-to-next-to leading order (NNLO)
analysis [70], including target mass effects as in Ref. [47], and from the MRST NNLO
analysis [67], with and without target mass effects according to [16] included. It is clear that
target mass effects are required to describe the data. However, other than the target mass
corrections, no additional nonperturbative physics seems necessary to describe the average
behavior of the resonance region for Q2 > 1 GeV2. Furthermore, this is true for a range
of different Q2 values, indicating that the scaling curve describes as well the average Q2

dependence of the resonance region. These results are analogous to those in Fig. 14 for the
F2 structure function, and are a clear manifestation of quark-hadron duality in the separated
transverse and longitudinal channels.

The scaling curves in all of the unpolarized structure functions appear dual therefore
to the average of the resonance region strength. This statement is quantified in Fig. 16
of Sec. IVA1 above for the ratios of integrals of the resonance to scaling functions. The
main difficulty in the integrated ratio approach of testing duality was the lack of knowledge
of the correct perturbative structure function at large x. Nonetheless, for all of the spin-
averaged structure functions of the proton (F1, F2, FL and R), the integrated resonance
region strength for Q2 >∼ 1 GeV2 is similar to the integrated perturbative strength over the
same range in x. This strongly suggests that, at least for the unpolarized structure functions,
duality is a fundamental property of nucleon structure.

2. Moments of F1 and FL

In this section we present moments of new, LT-separated, spin-averaged, structure func-
tion data. Previously, F2 moments were constructed using assumed values for R. Since
hardly any measurements of R existed in the nucleon resonance region before the Jefferson
Lab E94-110 experiment [65,66], one may expect small changes to the low-Q2 moments of
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F2 constructed from the earlier data.
At lower values of Q2 (< 5 GeV2), the region of the nucleon resonances covers larger

intervals of x, and consequently resonances provide increasingly dominant contributions to
structure function moments. Since bound state resonances are associated with nonpertur-
bative effects in QCD, one expects deviations from perturbative behavior to be strongest in
this regime. This is especially true in the longitudinal channel, where long-range correlations
between quarks are expected to play a greater role, as discussed in Sec. IVB1, above.

As can be seen in Figs. 27 and 28, nonperturbative effects (other than the elastic con-
tribution) appear to be small in the new Jefferson Lab data above Q2 = 0.7 GeV2. Here,
the n = 2 and n = 4 moments of the F p

2 (top), 2xF p
1 (center), and F p

L (bottom) structure
functions are extracted from fits to the Jefferson Lab Hall C [65,66] and SLAC [95,98] data.
This moment analysis is still preliminary [99], and is ultimately expected to have ≈ 5%
errors. The total moments, which include the full range in 0 ≤ x ≤ 1, are connected by
the solid lines, while the moments without the elastic contribution are connected by the
dashed lines. At high Q2 the elastic contribution rapidly vanishes (structure functions are
identically zero at x = 1 in the Bjorken limit), so that the difference between the two sets of
curves becomes negligible by Q2 ≈ 2 GeV2 for the n = 2 moments, and by Q2 ≈ 2.5 GeV2

for the n = 4 moments.
One of the most remarkable features of the results in Figs. 27 and 28 is that the elastic-

subtracted moments exhibit little or no Q2 dependence even for Q2 < 1 GeV2. In the region
where the moments are completely dominated by the nucleon resonances, the n = 2 and
n = 4 moments of all of the unpolarized structure functions appear to behave just as in
the deep inelastic region at high Q2. In both cases, nonperturbative corrections to the Q2

dependence must be quite small.
Finally, in Fig. 29 we show the (n = 2) Nachtmann moments, in a comparable Q2 range

to Figs. 27 and 28. Interestingly, the target-mass corrections to the Nachtmann moments
reduce even further the remaining Q2 dependence of the structure function moments at low
Q2. The full F p

2 moment with the elastic included exhibits very limited Q2 dependence,
and less than the comparable Cornwall-Norton moment. There remains an observable Q2

dependence of the full F p
L (n = 2) moment, on the other hand, at lower Q2, but it is

also reduced compared to the Cornwall-Norton moment. Note that the scale of Fig. 29
is necessarily different from that of Figs. 27 and 28. The effect of neglecting the elastic
contribution is reduced for both, but more dramatically so in the latter.

We shall discuss the implications of these findings in terms of the operator product
expansion in Sec. VA1. In the next section, however, we examine duality for spin-dependent
structure functions.
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FIG. 20. Cornwall-Norton moments of the F p
2 structure function, for (a) n = 2, (b) n = 4, (c)

n = 6, and (d) n = 8. Contributions to the moment are shown separately for the elastic peak

(squares), the regions 1.2 < W 2 < 1.9 GeV2 (triangles), 1.9 < W 2 < 2.5 GeV2 (open circles), and

W 2 > 4 GeV2 (stars), together with the total moment (filled circles). The curves connect the data

points to guide the eye.
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FIG. 21. The νWFe
2 = FFe

2 structure function for iron (per nucleon) as a function of ξ. The

data were obtained at fixed electron scattering angle, and the quoted Q2 (in units of GeV2) are

the values for x = 1. The arrows indicate the values of ξ corresponding to the quasi-elastic peak

for each setting.
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FIG. 22. F2 structure function per nucleon as a function of ξ for hydrogen, deuterium, and

iron. The curves are the GRV parameterization [81] at Q2 = 1 GeV2, corrected for the nuclear

EMC effect. Errors shown are statistical only.
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FIG. 23. F d
2 structure function as a function of Q2 at fixed values of ξ. The dashed lines are

d lnF 2
2 /d lnQ2 fits to higher Q2 data. The solid lines denote fixed values of W 2 = 2 and 4 GeV2.

Errors are statistical only, and systematic uncertainties vary between ∼ 3% and ∼ 7%. The data

above W 2 = 4 GeV2 are mostly from SLAC, and those below W 2 = 4 GeV2 from Jefferson Lab,

as described in Ref. [87].
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FIG. 24. Ratio of nuclear to deuterium cross sections per nucleon, corrected for neutron excess,

for carbon (top), iron (center) and gold (bottom) versus ξ. The resonance data at low W and Q2

from Jefferson Lab (circles) are compared with the deep inelastic data at high W and Q2 from

SLAC E139 (diamonds), SLAC E87 (crosses), and BCDMS (squares). The scale uncertainties for

the SLAC (left) and JLab (right) data are shown in the figure.
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FIG. 25. The purely transverse proton structure function 2xF p
1 , measured in the resonance

region (triangles) as a function of x, compared with existing high-precision DIS measurements

from SLAC (squares). The curves are from Alekhin (dashed) [70], and from MRST [67], both at

NNLO, with (dotted) and without (solid) target mass effects included, as described in the text.

The prominent resonance regions (∆, S11, F15) are indicated by the arrows.
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FIG. 26. As in Fig. 25, but for the longitudinal structure function FL.
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FIG. 27. Second (n = 2) Cornwall-Norton moments of the F2 (top), 2xF1 (center) and FL (bot-

tom) structure functions, evaluated from the preliminary Jefferson Lab Hall C data [65,66]. The

total moments are connected by solid lines, and elastic-subtracted moments by dashed lines.

FIG. 28. As in Fig. 27 but for the n = 4 moments.
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FIG. 29. Second (n = 2) Nachtmann moments of the F2 (top) and FL (bottom) structure

functions, evaluated from the preliminary Jefferson Lab Hall C data [65,66]. The total and elas-

tic-subtracted moments are shown by the solid and dashed lines, respectively.
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C. Duality in Spin-Dependent Structure Functions

In the previous section we have explored the transition between the partonic and hadronic
regimes in unpolarized electron scattering, and established the degree to which quark-hadron
duality holds in the F1 and F2 structure functions. In principle, there should also exist
kinematic regions in spin-dependent electron–nucleon scattering, where descriptions in terms
of both hadron and parton degrees of freedom coexist. Indeed, duality in spin-dependent
structure functions has been predicted from both perturbative [100] and nonperturbative
QCD arguments [101,102].

The feature which most distinguishes the study of duality in spin-dependent scattering
from spin-averaged is that since spin structure functions are given by differences of cross
sections, they no longer need be positive. A dramatic example of this is provided by the ∆
resonance, whose contribution to the g1 structure function of the proton is negative at low
Q2, but changes sign and becomes positive at high Q2. In spin-dependent scattering several
new questions for the investigation of quark-hadron duality therefore arise:

1. Does quark-hadron duality work better (or only) for positive definite quantities such
as cross sections, in contrast to polarization asymmetries?

2. Is there a quantitative difference between the onset of quark-hadron duality for spin-
averaged and spin-dependent scattering, and if so, what can this be attributed to?

3. Does quark-hadron duality also hold for local regions inW for spin-dependent structure
functions, and if so, how do these regions differ from those in unpolarized scattering?

Expanding on the last question, the example above of the ∆ resonance contribution to
the polarization asymmetry is sometimes used as evidence against quark-hadron duality
in spin-dependent scattering [103]. However, this argument is still not complete: the ∆
resonance region consists of both a resonant and a nonresonant contribution, and it is the
interplay between these that is crucial for the appearance of duality [100,104]. The more
relevant question is at which value of Q2 does the ∆ resonance region turn positive (in the
case of the proton gp

1), and whether quark-hadron duality holds at lower Q2 if one averages
over the elastic or other nearby resonances in addition to the ∆. Clearly duality cannot be
too local at low Q2.

In this section we will examine the degree to which local quark-hadron duality exists
in spin-dependent electron scattering, and how this is reflected in the moments of the g1

structure function. We begin by reviewing measurements of the proton g1 structure function,
following which we discuss experiments with deuterium and 3He (neutron) targets. The
latter can be combined with the proton data to resolve the isospin dependence of duality
in spin structure functions. Several sum rules, most notably the generalized Gerasimov-
Drell-Hearn sum rule, are discussed, and we conclude by reviewing the relevance of the g2

structure function for quark-hadron duality studies.

1. Proton g1 Structure Function

A large quantity of precision spin structure function data has been collected over the
past two decades [105] in the deep inelastic region (W > 2 GeV) over a large range of Q2.
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This has allowed for initial studies of the logarithmic scaling violations in the gp
1 structure

function, and more recently has enabled one to embark upon dedicated investigations of
quark-hadron duality in spin-dependent scattering.

The spin structure functions g1 and g2 are typically extracted from measurements of the
longitudinal (A‖) and transverse (A⊥) polarization asymmetries (see Sec. II). The early
resonance region measurements of A‖ from SLAC, over twenty years ago [106], covered
the range Q2 ≈ 0.5 GeV2 to 1.5 GeV2. The data showed that the asymmetries in the
resonance region, apart from the ∆, were indeed positive. From comparisons of the measured
asymmetries with a fit to deep inelastic data, it was concluded [106] that the behavior of the
spin-dependent asymmetries was consistent with duality, in analogy with the unpolarized
case. The noted exception was a major oscillation away from the deep inelastic behavior in
the ∆ region, for Q2 = 0.5 GeV2.

The first modern experiment accessing the spin structure functions in the resonance
region was SLAC experiment E143 [107,108], which measured both A‖ and A⊥ for protons
(and deuterons) over a wide range of kinematics. Significant structure was observed in gp

1,
and, within uncertainties, agreement with the previous SLAC data [106] taken at similar
kinematics. Again, a negative contribution in the region of the N − ∆ transition was
observed, and a large positive contribution for W 2 > 2 GeV2.

The E143 data at Q2 ≈ 1.2 GeV2 are shown in Fig. 30, together with data in the
deep inelastic region at Q2 = 3.0 GeV2 (data at Q2 ≈ 0.5 GeV2 were also taken). To
facilitate comparison at different Q2 the data are shown as a function of the Nachtmann
scaling variable ξ, which accounts for target mass corrections. Target mass effects can also
be incorporated in perturbative QCD-based calculations, as was done for the unpolarized
structure functions. We will show such comparisons with the more recent data below.

One can see from Fig. 30 that the resonance region data at Q2 ≈ 1.2 GeV2 seem to
approach the deep inelastic results, with the exception of the N − ∆ transition region
(which occurs at ξ ≈ 0.5). When integrating over the region of ξ corresponding to the
nucleon resonances at Q2 ≈ 1.2 GeV2, one finds about 60% of the corresponding deep
inelastic strength at Q2 = 3.0 GeV2. Obviously, a large source of this missing strength lies
in the ∆ region, which is still negative, and indeed the integrated strength in the region
2 < W 2 < 4 GeV2 amounts to about 80% of the corresponding deep inelastic strength.

Recently, the HERMES Collaboration at DESY reported Ap
1 spin asymmetry data in the

nucleon resonance region for Q2 > 1.6 GeV2 [109] — see Fig. 31. The resonance region data
are in agreement with those measured in the deep inelastic region [108,110–112]. The curve
in Fig. 31 is a power law fit to the world deep inelastic data at x > 0.3, Ap

1 = x0.7. Such
a parameterization is constrained to approach unity at x = 1, which is consistent with the
trend of the data shown. The Ap

1 data in the resonance region exceed the prediction from
the SU(6) symmetric quark model (Ap

1 = 5/9) [9] for x >∼ 0.5 (see Sec. VC1 below). The
chosen parameterization is independent of Q2, as supported by the experimental data in this
range of x [112].

The average ratio of the measured Ap
1 asymmetry in the resonance region to the deep

inelastic power law fit is 1.11 ± 0.16 (stat.) ± 0.18 (syst.) [109]. This suggests that for
Q2 > 1.6 GeV2, the description of the spin asymmetry in terms of quark degrees of freedom
is, on average, also valid in the nucleon resonance region. The implication of this result
is the tantalizing possibility of measuring the partonic content of Ap

1 at large values of x,
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FIG. 30. Proton gp
1 structure function measured by SLAC experiment E143 [107,108]. The

open circles denote the deep inelastic region at Q2 = 3.0 GeV2, and the solid squares represent the

nucleon resonance region at Q2 ≈ 1.2 GeV2. (The three solid squares at the lowest ξ are beyond

the nucleon resonance region, at 4 < W 2 < 5 GeV2.) The data are shown as a function of the

Nachtmann variable ξ to take target mass effects into account, and to facilitate comparison of these

disparate kinematics.

almost up to x = 1, by extending such measurements into the nucleon resonance region.
Measurements of spin structure functions in the nucleon resonance region at Q2 > 1 GeV2,
with both good statistical and systematic precision, would be very welcome to investigate
this in detail. Recently, the E01-006 experiment at Jefferson Lab [113,114] measured A‖ and
A⊥ to high precision at Q2 = 1.3 GeV2, and the data, which are currently being analyzed,
will allow a sensitive test of the assumptions made to extract Ap

1. However, to investigate the
mechanisms and the applications of quark-hadron duality, precise measurements at higher
values of Q2 are required.

As mentioned in Sec. II, there are advantages in presenting spin-dependent data in terms
of g1 rather than A1, as the former is less sensitive to the precise knowledge of g2 (or A2). The
CLAS Collaboration at Jefferson Lab carried out inclusive polarized scattering experiments
at energies of 2.6 and 4.3 GeV, using polarized NH3 as the target material [115]. Some of
the results, for Q2 > 0.7 GeV2, are shown in Fig. 32. In the lowest-Q2 bin, the contribution
of the ∆ resonance region to gp

1 is negative, whereas the contributions of the higher-mass
states are positive. The negative ∆ contribution obviously prevents a naive local duality
interpretation at low Q2. However, in some models [102,117] local duality is only expected
to arise after averaging over the ∆ and the (positive) elastic contribution (see Sec. VC2
below). Indeed, addition of the nucleon elastic and N − ∆ transition contributions would
render a positive definite value for the averaged gp

1.
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FIG. 31. Proton spin asymmetry Ap
1 as a function of x in the resonance region (solid circles) by

the HERMES Collaboration [109]. The errors are statistical only, with the systematic uncertainty

in the resonance region about 16%. Open symbols are previous results obtained in the deep inelastic

region. The curve represents a power law fit to the deep inelastic data at x > 0.3, and the SU(6)

prediction (Ap
1 = 5/9) [9] for the x→ 1 limit is indicated.

At higher Q2 values, the role of the nonresonant background becomes more prominent,
and the magnitude of the (negative) contribution of the ∆ region rapidly decreases, be-
coming comparable to the (positive) contribution from elastic scattering. In contrast, the
gp
1 structure function at the higher-W regions shows less Q2 variation, and in fact already

closely resembles the global structure function parameterizations [116]. As found earlier
in the F p

2 structure function, the nucleon resonance region data seem to “heal” towards
the perturbative expectation. This onset is slower for the ∆ region, due to the still large,
but rapidly decreasing, elastic contribution. Apart from the ∆ region, which still shows no
clear sign of local duality at the Q2 values of the present data, one can conclude that some
evidence for quark-hadron duality does exist for the proton spin structure function gp

1.
This is further illustrated in Fig. 33, where we show the integrated strength of the nucleon

resonance region data in Fig. 32 as compared to the integrated strength from the global
structure function parameterizations [116]. Here the data have been split into two regions
— the region W 2 < 2 GeV2 (with the elastic contribution included), and 2 < W 2 < 4 GeV2

— and then integrated for each Q2 over the x regions corresponding to the chosen W 2.
Clearly the elastic region overcompensates for the negative ∆ region contribution, and the
ratio for the region W 2 < 2 GeV2 falls as a function of Q2. The region 2 < W 2 < 4 GeV2 has
∼ 75% of the strength of the global QCD parameterization [116], close to the 80% found in
the SLAC-E143 data [107,108] at Q2 = 1.2 GeV2. The complete nucleon resonance region,
with the elastic contribution included, closely resembles what one expects from the QCD
parameterization at Q2 ≈ 1.7 GeV2. However, an even earlier onset is observed when both
the elastic and ∆ regions are left out.
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FIG. 32. Proton spin structure function gp
1 from CLAS [115] in the resonance region, at three

values of Q2 indicated. The curves are the global parameterizations of the spin structure functions

from Ref. [116].

The special role played by the ∆ resonance in spin-dependent scattering means that
quark-hadron duality sets in later (at higher Q2) here than in the corresponding spin-
averaged case. The ∆ region in the gp

1 structure function remains negative at least until
Q2 ≈ 2 GeV2. On the other hand, one could also argue that the ∆ region is not negative
enough! This is clear from Fig. 33, where the ∆ resonance region together with the elastic
contribution included still has too much strength at low Q2. This is consistent with the fact
that higher-twist analyses of the lowest moment of gp

1 do not show large higher twist effects
(see Sec. VA2).

Summarizing the current experimental evidence, we see that some form of local duality
is clearly evident for Q2 > 1.6 GeV2 from at least two observations: the spin asymmetry Ap

1

in the nucleon resonance region agrees well on average with a deep inelastic power law fit,
and the gp

1 integrated strength (with the elastic contribution included) agrees well with that
from a global structure function parameterization [116] at Q2 > 1 GeV2. This leads us to
conclude that the onset of duality in the proton spin structure function occurs somewhere in
the region of 1 < Q2 < 2 GeV2. Furthermore, the evidence for quark-hadron duality in both
the spin-averaged and the spin-dependent scattering process suggests that the helicity-1/2
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FIG. 33. Ratio of the integrated strength of the gp
1 data in Fig. 32 to that of the global

parameterization from Ref. [116]. Both the data and the QCD parameterization are integrated for

each Q2 over the x regions corresponding to the indicated W 2 regions (with the elastic contribution

included).

and helicity-3/2 photoabsorption cross sections exhibit quark-hadron duality separately.

2. Experiments with Polarized 2H and 3He Targets

The absence of free neutron targets means that the neutron spin structure function gn
1 is

usually obtained from polarized lepton scattering off either polarized deuterium or polarized
3He targets. In the former case, since the deuteron has spin 1, the spins of the bound proton
and neutron are predominantly aligned, with a small (≈ 5%) probability (due to the nuclear
tensor force) of finding the nucleons in a relative D-state with spins antialigned. In the case
of a spin-1/2 3He nucleus, the protons pair off with opposite spins with ≈ 90% probability,
leaving the neutron to carry most of the polarization of the nucleus [118].

The extraction of the free neutron structure function gn
1 from either the gd

1 or g
3He
1 data

requires corrections to be made for the neutron depolarization, as well as for other nuclear
effects such as nuclear binding and Fermi motion. These have been studied extensively in
Refs. [119,120], and are found to be important mostly at large x. They have also been cal-
culated recently for the structure functions in the resonance region, at low and intermediate
values of Q2 [121]. For the low moments of gn

1 the magnitude of the correction is relatively
small, however.

The first experiment measuring the deuteron spin structure function gd
1 in the nucleon

resonance region was the SLAC experiment E143 [107,108], utilizing a polarized ND3 target.
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FIG. 34. Neutron gn
1 structure function data, as extracted from the difference of SLAC-E143

gd
1 and gp

1 data [107,108]. The open circles represent the nucleon resonance region data at

Q2 ≈ 1.2 GeV2 (the three lowest-x data points are technically beyond the nucleon resonance

region, at 4 < W 2 < 5 GeV2). The curve is a global parameterization of the spin structure

functions from Ref. [116].

As in the proton case, the Q2 ≈ 1.2 GeV2 data showed a clear negative contribution in the
region of the N−∆ transition, and a positive contribution for W 2 > 2 GeV2. The measured
gd
1 structure function amounts to about half of the gp

1 structure function, leading to an almost
null, but slightly negative, contribution of gn

1 . This is essentially the same behavior as that
found in the DIS data at higher W and Q2. The overall strength (integrated over ξ) of
gn
1 in the nucleon resonance region (not including the quasi-elastic contribution) amounts

to about 60% of the corresponding deep inelastic strength at Q2 = 3.0 GeV2 of the same
experiment [108], or about 80% for the region 2 < W 2 < 4 GeV2, similar to that found for
the proton.

The gn
1 structure function extracted from the difference of the SLAC-E143 gd

1 and gp
1

data, gn
1 = 2gd

1/(1−1.5ωD)− gp
1 , with ωD ≈ 5% the D-state probability, is shown in Fig. 34.

Nuclear corrections other than the D-state probability are not included, as these are small
compared to the statistical uncertainties of the experiment [119]. The gn

1 data in Fig. 34 are
compared with the results from a global structure function parameterization at similar Q2

[116]. Although the statistics in the gn
1 data are rather limited, some evidence for duality

is visible, at a similar level as for the gp
1 data (at identical Q2) in Fig 30. The gn

1 nucleon
resonance region data are negative on average, so that quark-hadron duality appears to work
both for positive-definite and negative-definite quantities.

The CLAS Collaboration at Jefferson Lab collected gd
1 data with significantly smaller

statistical uncertainties than the SLAC-E143 experiment, and better resolution in W [122].
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Unfortunately, the maximum average Q2 in their data is currently limited to ≈ 1.0 GeV2,
which precludes any conclusions on the onset of duality beyond what can be inferred from the
SLAC data. The higher-precision CLAS data does show an unambiguously positive gd

1 for
W 2 > 2 GeV2, indicating that the helicity-1/2 transition amplitudes dominate even at rather
low values of Q2 (Q2 ≈ 0.5 GeV2). They conclude that the onset of local duality is slower for
polarized structure functions than for unpolarized, as only the highest Q2 = 1.0 GeV2 data,
beyond the ∆ region, show fairly good agreement with a fit to DIS data at Q2 = 5 GeV2

[122]. For the unpolarized F d
2 structure function, local duality was observed to hold well

already for Q2 = 0.5 GeV2, from a similar comparison. Recently, the CLAS Collaboration
extended the momentum transfer region of their data to Q2 ≈ 5 GeV2. The results of this
analysis will be very valuable in determining the value of Q2 for the onset of duality in gd

1 .
Similarly, an experiment in Hall A at Jefferson Lab has accumulated data to investigate

the onset of local duality in polarized electron scattering from a polarized 3He target [123].
The experiment measured the g

3He
1 structure function over the full nucleon resonance region,

up to Q2 ≈ 5 GeV2. As mentioned above, the polarized 3He target acts to good approx-
imation as a source of polarized neutrons, although nuclear corrections will become more
important in the large-x region (x >∼ 0.5) covered by these data than for the case of the
deuteron.

3. Sum Rules at Low and High Q2

Sum rules involving the spin structure of the nucleon offer an important opportunity to
study fundamental properties of QCD. A classic example is the Bjorken sum rule, which
at high Q2 relates the lowest moment of the isovector nucleon g1 structure function to the
nucleon axial charge gA [124],

Γp−n
1 (Q2) =

1

6
gA

(
1 +

αs(Q
2)

π
+ · · ·

)
. (66)

Sum rules for the individual proton and neutron moments, Γp
1 and Γn

1 , can also be derived
[125], assuming knowledge of the octet and singlet axial charges (see also Ref. [126].)

At the other extreme of real photon scattering, Q2 = 0, there is another fundamental sum
rule, derived independently by Gerasimov, and Drell and Hearn (GDH) [127]. The GDH
sum rule relates the helicity-dependent total absorption cross section for circularly polarized
photons on linearly polarized nucleons to the nucleon anomalous magnetic moment κ,

IGDH ≡
∫ ∞

ν0

dν

ν

(
σ1/2(ν) − σ3/2(ν)

)
= −2π2α

κ2

M2
, (67)

where σ1/2 and σ3/2 are the total helicity-1/2 and 3/2 photoabsorption cross sections, α is
the electromagnetic fine structure constant, and ν0 = mπ(1 +mπ/2M) is the inelastic pion
production threshold energy. This sum rule thus provides a fascinating link between the
helicity-dependent dynamics at low and high energies, and static ground state properties of
the nucleon. In terms of the g1 structure function, the GDH sum rule can be equivalently
written as
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∫ ∞

ν0

dν

ν2
g1(ν,Q

2 = 0) = − κ2

2M
. (68)

The derivation of the GDH sum rule follows from a general dispersion relation applied
to forward Compton scattering, and the applicability of the low energy theorem (LET) and
the no-subtraction hypothesis for the spin-flip part of the Compton scattering amplitude.
The use of unsubtracted dispersion relations follows from causality, while the LET originates
from gauge invariance and relativity. Because of the 1/ν weight in the integral in Eq. (67),
the GDH sum rule is mostly sensitive to the low-energy part of the photoabsorption cross
section, in the region where baryon resonances dominate and single pion production is the
main contribution. The generality of the assumptions in deriving the GDH sum rule have
prompted a concerted experimental effort to test its validity directly.

From Eqs. (67) or (68) one observes that the right hand side of the GDH sum rule at
Q2 = 0 is negative. On the other hand, the corresponding integral at non-zero Q2,

∫ ∞

ν0

dν

ν2
g1(x,Q

2) =
2M

Q2
Γinel

1 (Q2) , (69)

is determined by the inelastic contribution to the moment Γ1(Q
2), which for the case of

the proton is known to be positive. This illustrates a striking example of the workings of
quark-hadron duality in spin structure functions: as one moves from the real photon point
where duality is clearly violated, the integral (68) is forced to change sign and approach
a positive value at large Q2. This is in contrast to the unpolarized proton F2 structure
function, for instance, where only the magnitude of the n = 2 moment changes, from ≈ 0.2
at intermediate Q2 to unity (the proton charge) at Q2 = 0.

The GDH sum rule can be formally generalized to virtual photons at finite Q2 by defining
[128–130]

IGDH(Q2) ≡
∫ ∞

ν0

dν

ν

(
σ1/2(ν,Q

2) − σ3/2(ν,Q
2)
)

(70)

=
8π2α

M2

∫ x0

0

dx

K x

(
g1(x,Q

2) − γ2g2(x,Q
2)
)
, (71)

where x0 = Q2/2Mν0 is the value of x at the pion production threshold, γ = Q2/ν2, and K
is the virtual photon flux [130] (see Eq. (16) in Sec. II). In the limit Q2 → 0 the integral
(70) reduces to the GDH sum rule, IGDH(Q2) → IGDH, while in the Bjorken limit it is given
by the moment of g1(x),

IGDH(Q2) → 16π2α

Q2
Γ1(Q

2) ≡ I(Q2). (72)

At finite but non-zeroQ2 the integral IGDH(Q2) therefore interpolates between the two limits,
allowing one to study the evolution of the sum rule from large distances, where effects of
confinement are dominant, towards short distances, where a partonic description is possible
through asymptotic freedom. The generalized GDH sum rule is hence ideal for the study of
quark-hadron duality.
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A similar phenomenon also occurs in the lowest moment of the unpolarized F2 structure
function, which interpolates between the nucleon’s electric charge at Q2 = 0 (Coulomb sum
rule) and the momentum sum rule at asymptotic values of Q2. The only difference is that
the spin-dependent sum rules result from interference effects, and as such may lead to a
deeper understanding of the transition from confinement to asymptotic freedom.

Before proceeding with the experimental results on the generalized GDH integral
IGDH(Q2), we note that while the Q2 → 0 and Q2 → ∞ limits are well defined, there
are two avenues for exploring the transition at intermediate Q2. From its definition in
Eq. (67), the integral IGDH for real photons includes only inelastic contributions, whereas
the deep inelastic integral is formally defined as a sum over all possible final states, in-
cluding the elastic. The latter is zero at asymptotically large Q2, but can be significant at
Q2 <∼ 1–2 GeV2. In constructing the generalized GDH integral, one can therefore either add
the elastic to the GDH sum at Q2 = 0 and match to the total DIS moment at high Q2,
or subtract the elastic component from the DIS integral and evolve the inelastic integral to
low Q2. For higher-twist analyses (see Sec. VA2 below), which rely on the formal operator
product expansion, the former choice must be made. On the other hand, the evolution of
the integral is more dramatically illustrated by considering the elastic-subtracted sum rule.
The choice is in principle arbitrary, but it is important to ensure that like quantities are
being compared.

The GDH sum rule for real photons has been studied for photon energies up to 2.5 GeV
[131]. The current experimental result deviates from the theoretical prediction by about
10%, although higher photon energy data are required for a more definitive conclusion. The
Bjorken sum rule has been verified at the 5% level for Q2 >∼ 2 GeV2. In the remainder
of this section we will focus on experimental results on the integral IGDH(Q2) at low and
intermediate values of Q2 (Q2 < 2 GeV2), which is most relevant for the study of quark-
hadron duality.

As discussed above, measurements on polarized proton targets have been performed
at SLAC by the E143 Collaboration [107,108], at DESY by the HERMES Collaboration
[132], and at Jefferson Lab by the CLAS Collaboration [115]. To construct the integral Γp

1,
parameterizations were used to extrapolate beyond the experimentally accessible regions of
x, to x = 0 and x = 1. The results for the elastic-subtracted Γp

1 integral from the CLAS
and SLAC E143 experiments are shown in Fig. 35 for Q2 < 1.4 GeV2.

The most characteristic feature of Γp
1(Q

2) is the strong Q2 dependence for Q2 < 1 GeV2,
with a zero crossing near Q2 ≈ 0.2–0.25 GeV2. The zero crossing is due largely to an
interplay between the excitation strengths of the ∆ and S11(1535) resonances, and the rapid
change in the helicity structure of the D13(1520) from helicity-3/2 dominance at the real
photon point to helicity-1/2 dominance at Q2 > 0.5 GeV2 [115]. The dramatic evolution of
Γp

1(Q
2) is therefore due to the intrinsic sensitivity of the spin-dependent structure functions

to the interference between various resonant and nonresonant transition states, whereas the
spin-averaged structure functions are sensitive to the square of their sum. In addition, in
the limit Q2 → 0 one enhances the effect of the spin-3/2 ground state, the ∆(1232). In
the nonrelativistic SU(6) quark model this effect would be even more spectacular, as will be
discussed in Sec. VC2 below.

The data in Fig. 35 slightly underestimate the perturbative QCD curve evolved down to
Q2 ≈ 1 GeV2. This deviation can be mostly attributed to the negative contribution of the
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FIG. 35. Inelastic contribution to the moment Γp
1 of the proton g1 structure function as a

function of Q2. The filled squares correspond to the measured values from CLAS [115], while the

open squares include in addition contributions from the unmeasured low-x region. The light shaded

squares are from the SLAC E143 experiment [108]. The various curves are explained in the text.

∆ resonance, which is still sizable even at Q2 ≈ 1 GeV2. The data are well described by the
model of Burkert and Ioffe [133], which includes resonance excitations and connects to the
deep inelastic region assuming vector meson dominance. The description in the model of
Soffer and Teryaev [134], without explicit nucleon resonance contributions, is not as good.
In this model, the low-Q2 behavior of g1 is governed by the Q2 dependence of a linear
combination of the electric and magnetic form factors. Heavy baryon chiral perturbation
theory has been proposed as a tool to describe the evolution of the GDH sum rule to small
non-zero values of Q2 (Q2 <∼ 0.1 GeV2), although the existing calculations [135] (labeled
“χPt” in Fig. 35) are still at too low Q2 to compare with the data shown.

To extract information on the neutron’s first moment, Γn
1 , experiments have been per-

formed using both polarized deuterium and 3He targets at SLAC [107,108], at DESY [132],
and at Jefferson Lab [122,136], as discussed in the previous section. We will focus only
on the results of the 3He experiments, as they have the largest overlap with our region of
interest. After correcting for nuclear effects and accounting for the unmeasured low-x part,
the elastic-subtracted moment Γn

1 (Q2) is shown in Fig. 36. Again, the model of Ref. [133]
including resonance contributions and assuming a vector meson dominance inspired con-
nection with the perturbative region describes the data fairly well. Also, as mentioned in
Sec. IVC2 above, Γn

1 remains negative from high Q2 down to low Q2, highlighting the fact
that quark-hadron duality works well even for quantities which are not positive-definite.

Finally, using the results for the proton and neutron, the Q2 dependence of the (elastic-
subtracted) Bjorken integral is displayed in Fig. 37. Here, the contributions from isospin-3/2

66



FIG. 36. Inelastic contribution to the moment Γn
1 of the neutron g1 structure function as a

function of Q2. The solid circles are from the Jefferson Lab Hall A experiment E94-010 [136], with

the band indicating the size of the systematic uncertainties. The open symbols are from SLAC

and HERMES experiments. The curves are as in Fig. 35 and described in the text.

resonances, such as the ∆(1232), cancel out exactly, thereby removing the zero crossing from
the isovector integral. Since the results on the proton and on the neutron (from 3He) were
obtained at somewhat different Q2 values, a smooth interpolation was used to evolve to
common Q2 values. The results for the proton–neutron difference are at the centroid of the
shaded band in Fig. 37. As expected from the comparison with the separate Γp

1 and Γn
1

moments, the model of Ref. [133] also provides a good description of the difference Γp
1 −Γn

1 .
It is perhaps not very surprising that this sum rule smoothly joins to the perturbative

expectation already at Q2 ≈ 1 GeV2. We have seen before that duality violations appear
strong for the region where the well-isolated ground states of the spin-1/2 (elastic) and spin-
3/2 (∆) are prominent (see e.g., Figs. 19, 20, and 33). With the removal of the elastic
contribution, the cancellation of the isospin-3/2 resonances, and the partial cancellation
of contributions from other resonances at low Q2, the transition from a confinement-based
hadronic world to an asymptotically free quark-gluon world may appear fairly smooth down
to low Q2.

4. The g2 Structure Function

The structure function g1 can be understood within the quark-parton model in terms of
spin-dependent quark distributions (see Eq. (41) of Sec. II). The interpretation of the struc-
ture function g2, on the other hand, is less straightforward. In the language of the operator
product (or twist) expansion in QCD (see Sec. VA below), the g2 structure function receives
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FIG. 37. Difference of the proton and neutron moments of the g1 structure function, including

only inelastic contributions. The shaded band below Q2 = 1 GeV2 parameterizes the results

derived from Refs. [66] and [137]. The light-shaded band above Q2 = 1 GeV2 corresponds to the

perturbative evolution of the Bjorken integral from large Q2 including O(α3
s) corrections. The

curves are as in Fig. 35 and described in the text.
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contributions from a scaling (or “leading twist”) part, derived by Wandzura & Wilczek [138]
and denoted by gWW

2 , a component which arises from transverse quark polarization (which is
proportional to the quark massmq, and usually neglected), and a “higher-twist” contribution
associated with nonperturbative quark-gluon interactions. Since the parton model includes
neither transverse momentum nor quark-gluon interactions, there is no direct interpretation
of g2 within this framework.

For studies of quark-hadron duality, g2 is of particular interest specifically because, unlike
for the other structure functions, the effects of quark-gluon correlations are not suppressed
by powers of 1/Q2, but enter at the same order as the leading-twist terms. One could argue,
therefore, that measurement of g2 provides one of the most direct windows on duality and
its violation. We will present in this section data on gp

2 and gn
2 , in anticipation of an analysis

in terms of higher-twist matrix elements in Sec. VA2 below.
An important sum rule involving the g2 structure function is the the Burkhardt-

Cottingham (BC) sum rule [139],

Γ2(Q
2) =

∫ 1

0
dx g2(x,Q

2) = 0 , (73)

which follows from a dispersion relation for the forward spin-flip Compton amplitude, and
is expected to be valid at all Q2. Its validity assumes the absence of singularities at low x,
similar to the assumption made in the derivation of the GDH sum rule. A comprehensive
discussion of the BC sum rule and what it tests can be found in Ref. [140]. The BC sum rule
is of interest from the point of view of quark-hadron duality, as various elastic, resonance,
and deep inelastic contributions must cancel for the sum rule to hold.

The SLAC E155 Collaboration has made the most precise measurements of the proton
and deuteron g2 structure functions, over a large range in x and Q2 in the deep inelastic
(W 2 ≥ 3 GeV2) region [141]. Figure 38 shows the Q2-averaged proton and deuteron xg2

structure functions, with Q2 ranging from 0.8 GeV2 (at low x) to 8.4 GeV2 (at high x).
The combined data for the proton disagree with the leading-twist gWW

2 prediction, whereas
the data for the deuteron agree. The latter indicates that the nonperturbative quark-gluon
correlations are small for the deuteron. The derived BC sum rule is found to be violated at
the level of three standard deviations for the proton, and found to hold within uncertainties
for the deuteron. This can be most readily explained by assuming more g2 strength for the
proton from the unmeasured x < 0.02 region than for the deuteron.

The E94-010 Collaboration in Hall A at Jefferson Lab recently measured [148] the g2

structure function of the neutron using a polarized 3He target. Excitation energies covered
the resonance region and part of the deep inelastic region, for 0.1 < Q2 < 0.9 GeV2. Fig-
ure 39 shows the extracted Γ2 for the neutron, in the measured region (filled circles), after
adding also the elastic component (open circles), and after adding an estimated contribu-
tion from the unmeasured deep inelastic region assuming g2 is given there by gWW

2 (open
diamonds). To extract neutron information from the 3He data, nuclear corrections were
performed as described in Ref. [120]. The resonance contribution calculated in the MAID
model [130] (solid line) agrees well with the measured resonance data.

The interplay between strength in the resonance region and the elastic contribution is
striking. The two contributions nearly cancel, such that the BC sum rule is verified, within
uncertainties, over the Q2 range measured, for the limited x range of this experiment. This
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FIG. 38. The structure function xg2 from SLAC experiments E155 (filled circles) [141], E143

(open diamonds) [142], and E155 (open squares) [143]. The errors are statistical; the system-

atic errors are shown as bands at the bottom of each panel. The curves are the leading-twist

Wandzura-Wilczek contribution [138] (solid), the bag model calculations of Stratmann [144]

(dot-dashed) and Song [145] (dotted), and the chiral soliton models of Weigel & Gamberg [146]

(short-dashed) and Wakamatsu [147] (long-dashed). (From Ref. [141].)
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FIG. 39. Contributions to the moment Γn
2 of the neutron gn

2 structure function from the reso-

nance region from JLab experiment E94-010 [148] (filled circles) along with the world data from

deep inelastic scattering [141] (open square), and the resonance contribution evaluated using MAID

[130] (solid line). The open circles include the elastic contribution, whereas the open diamonds

include both the elastic and an estimate of the unmeasured deep inelastic contributions. The

light grey band corresponds to the total systematic error, including uncertainties in the nuclear

corrections. (Adapted from Ref. [148].)

result appears at odds, however, with the violation of the BC sum rule on the proton reported
at high Q2 in Ref. [141]. On the other hand, the BC sum rule result extracted for the neutron
at high Q2 (≈ 5 GeV2) [141] is consistent within the large error bar. The difference between
the behavior of the proton and neutron g2 data is indeed intriguing. In passing, we note
that quark-hadron duality in the g1 structure function, as we saw in Secs. IVC1 and IVC2,
also seemed to be more readily obeyed for the neutron than for the proton. We can only
look forward to future high-precision data providing a definitive resolution of the BC sum
rule’s validity.

D. Scaling in Electro-Pion Production

Scaling is a well established phenomenon in inclusive deep inelastic scattering. The
cross section is proportional to structure functions that depend only on the scaling variable
x, up to calculable logarithmic Q2 corrections [60]. Both the observation of scaling and
subsequently the (logarithmic) scaling violations in the measured structure functions played
a crucial role in establishing QCD as the accepted theory of strong interactions, and in
mapping out the distributions of the constituents of protons and neutrons.

The observation of duality between the various inclusive structure functions measured in
the resonance region and those in the deep inelastic limit further indicates that the single
quark scattering process is decisive in setting the scale of the reaction, even in the region
dominated by nucleon resonances. Apparently, the role of final state interactions required
to form the resonances becomes almost insignificant when averaged over the resonances.
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FIG. 40. A representation of semi-inclusive electroproduction of π± mesons from nucleons. The

produced π± is detected in coincidence with the scattered electron, and X denotes the remaining

inclusive hadronic final state.

Given this situation it seems worthwhile to examine other electron scattering processes
that are closely related to deep inelastic scattering, but where scaling and scaling violations
are not as well established. The prime example of such a process is semi-inclusive deep
inelastic electroproduction of mesons m from nucleons,

e N → e′ m X , (74)

where the meson is detected in coincidence with the scattered electron. In this section we
examine inclusive pion (m = π±) electroproduction, as illustrated in Fig. 40, paying special
attention to both the onset of scaling and the appearance of quark-hadron duality. While
the phenomenon of duality in inclusive scattering is now well established, only preliminary
experimental studies of duality exist in semi-inclusive scattering and quantitative tests are
only just beginning.

The outgoing pion is characterized by the elasticity, z, defined in terms of the target
nucleon (p), virtual photon (q), and pion (pπ) momentum four vectors, z = p · pπ/p · q.
In the target rest (or laboratory) frame this becomes the fraction of the virtual photon’s
energy taken away by the pion, z = Eπ/ν. In the elastic limit the pion carries away all
of the photon’s energy, in which case z = 1. Here we will consider processes where the
electroproduced pion carries away a large fraction, but not all, of the exchanged virtual
photon’s energy.

The invariant mass W ′ of the undetected hadronic system is reconstructed from the
momenta of the target nucleon, photon and produced pion, W ′2 = (p+ q− pπ)2. Neglecting
the mass of the pion with respect to Q2 [149], one finds

W ′2 = W 2 − 2zν(M + ν − |~q| cos θqπ) , (75)

where θqπ is the angle between the virtual photon momentum ~q and the outgoing pion
momentum ~pπ in the laboratory frame. As in the inclusive scattering case, the square of the
total invariant hadronic mass is given by W 2 = M2 +Q2(1/x− 1). If the outgoing pion is
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further limited to be collinear with the virtual photon (i.e., parallel kinematics, θqπ = 0),
and if Q2/ν2 ≪ 1, the invariant mass W ′ can be expressed in terms of z, x and Q2 as

W ′2 ≈M2 +Q2(1 − z)
(

1

x
− 1

)
. (76)

The mass W ′ can play a role analogous to W for duality in inclusive scattering [149]. In
the limit of large z, W ′ will span masses in the nucleon resonance region, which we define
to be the same as that in the inclusive scattering case, W ′2 < 4 GeV2. Before proceeding
with the discussion of the results of early investigations of quark-hadron duality in pion
electroproduction, we shall first define what one means by the scaling region for such a
reaction.

As implied by Fig. 40, at high energies one expects from perturbative QCD that there
will be factorization between the virtual photon–quark interaction and the subsequent quark
hadronization into pions. At lowest order in αs, the detected pion yield N π±

then factorizes
into quark distribution functions q(x,Q2) and fragmentation functions Dq→π±(z,Q2),

N π±

(x, z, Q2) ∝
∑

q

e2q
[
q(x,Q2)Dq→π±(z,Q2) + q̄(x,Q2)Dq̄→π±(z,Q2)

]
, (77)

where Dq→π±(z,Q2) gives the probability that a quark of flavor q hadronizes to a pion
carrying a fraction z of the quark (or photon) energy. (At higher orders one also has gluon
fragmentation functions, but we shall neglect these for the purposes of this discussion.) A
consequence of this factorization is that the fragmentation function is independent of x,
and the quark distribution function is independent of z. Both the quark distribution and
fragmentation functions, however, depend on Q2 through perturbative Q2 evolution [150].

The fragmentation functions parameterize how a quark involved in a high-energy scat-
tering reaction evolves into the detected pion. Initial investigations of the hadronization
process were made in electron–positron annihilation and in deep inelastic scattering. In the
latter case, high energies were used to separate the pions produced by the struck quark
(termed “current fragmentation”) from pions originating from the spectator quark system
(“target fragmentation”) using large intervals in rapidity, η. Rapidity is defined in terms of
the produced pion energy and the longitudinal component of the momentum (along the ~q
direction),

η =
1

2
ln

(
Eπ − pz

π

Eπ + pz
π

)
. (78)

Earlier data from CERN [151,152] suggest that a difference in rapidities, ∆η, between pions
produced in the current and target fragmentation regions (“rapidity gap”) of ∆η ≈ 2 is
needed to kinematically separate the two regions.

At lower energies, it is not obvious that the pion electroproduction process factorizes
in the same manner as in Eq. (77). We shall return to this later in Sec. VD, but for
the moment will simply assume that factorization holds if one can reach a region where
kinematical separation between current and target fragmentation is possible, and one is in
the DIS region, W ′2 > 4 GeV2.
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FIG. 41. Relation between elasticity z and center of mass rapidity ηCM in semi-inclusive elec-

troproduction of various hadrons for W = 2.5 GeV (left panel) and W = 5 GeV (right panel).

(Adapted from Ref. [153].)

It has been argued that such kinematic separation is possible, even at low W 2, if one
considers only electroproduced pions with large elasticity z, i.e., with energies close to
the maximum energy transfer [152,153]. Figure 41 shows a plot of rapidity versus z for
W = 2.5 GeV (left panel) and 5 GeV (right panel). At W = 2.5 GeV, a rapidity gap of
∆η ≥ 2 would be obtained with z > 0.4 for pion electroproduction. For larger W , such a
rapidity gap could already be attained at a lower value of z. Hence, one would anticipate
a reasonable separation between the current and target fragmentation processes for z > 0.4
and z > 0.2 at W = 2.5 and 5 GeV, respectively.

In the annihilation process e+e− → hX [154,155] one finds that the data beyond z ≈ 0.5
atW = 3 GeV (W ′ = 1.94 GeV) could be described in terms of fragmentation functions. The
region extends to z ≥ 0.2 forW = 4.8 GeV (W ′ = 2.84 GeV) and to z ≥ 0.1 forW = 7.4 GeV
(W ′ = 4.14 GeV). For z > 0.3, fragmentation functions have also been obtained from data
[156] on ep → e′π±X at an incident energy E = 11.5 GeV, with 3 < W < 4 GeV. All of
these data are beyond the nucleon resonance region as defined above.

At lower energies, a series of measurements of semi-inclusive pion electroproduction was
carried out at Cornell, with both hydrogen and deuterium targets [157–159], covering a
region in Q2 between 1 and 4 GeV2, and in ν between 2.5 and 6 GeV. The data from
these experiments were analyzed in terms of an invariant structure function (analogous to
N π±

(x, z) in Eq. (77)), written in terms of the sum of products of parton distribution and
fragmentation functions. The authors conclude that within their region of kinematics this
invariant structure function shows no Q2 dependence, and a weak W 2 dependence. This is
particularly striking if one realizes that the kinematics in these experiments covered a region
in W 2 between 4 and 10 GeV2, and in z between 0.1 and 1. In fact, for a portion of the
kinematics one is in the region M2 < W ′2 < 4 GeV2, right within the nucleon resonance
region. Nonetheless, the data were surprisingly found to exhibit scaling [160].

Up to now we have neglected the dependence of measured pion yields, as in Eq. (77), on
the pion transverse momentum, pT . At high energies the dependence on pT is approximately
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given by exp(−bp2
T ), where b reflects the average transverse momentum of the struck quark.

At lower energies, the measured pT dependence will reflect the decay angular distributions
of the electroproduced resonances in regions where these resonances dominate. One would
expect therefore the pT dependence to vary at low W ′. We will come back to this in Sec. VD.
In the Cornell data at relatively low W ′, however, the dependence of the measured cross
sections on pT (which was only low, < 0.5 GeV, in these data) was found to be, within the
experimental uncertainties, independent of kinematics [160].

Empirical evidence of factorization (independence of the x and z distributions) in pion
electroproduction at even lower energies is apparent in the results of several test runs made
in Hall C at Jefferson Lab [161]. The data included measurements of semi-inclusive pion
electroproduction on 1H and 2H targets at relatively low energy, ν = 3.9 GeV, with W 2 =
5.9 GeV2, and Q2 = 2.4 GeV2. Under the assumptions of factorization, as in Eq. (77),
charge conjugation invariance, isospin symmetry, and neglecting nuclear corrections, the use
of charged pion yields on both targets allows for the extraction of the ratio of valence d to
u quark distributions in the proton, dv/uv.

The single Jefferson Lab point is plotted in Fig. 42 together with a collection of data from
deep inelastic neutrino measurements at CERN and Fermilab at energies of several hundred
GeV [81]. As the data were obtained at an elasticity z > 0.5, it may not be surprising that
reasonable agreement is found at these vastly different kinematics, even though the W ′ of
the Jefferson Lab data is in the nucleon resonance region, 2.0 < W ′2 < 3.3 GeV2. In the
kinematics plot of Fig. 41 (left panel), one would anticipate factorization to work reasonably
well for z > 0.5, whereas the experimental data show hardly any resonance structure at
W ′2 > 2 GeV2, as for the Cornell data [157–159] described above. Duality may follow
simply from the fact that one cannot clearly distinguish the resonance and scaling regions,
and from the existence of such low-energy factorization [102,162].

It is important to stress that the existence of quark-hadron duality does not imply that
the reaction can be described by perturbative QCD alone. As in the inclusive DIS case,
where parton distribution functions parameterize the soft, nonperturbative nucleon struc-
ture, so too in semi-inclusive meson electroproduction one parameterizes the soft hadroniza-
tion process in terms of fragmentation functions. In the exclusive limit, if the total center of
mass energy W is much larger than W ′ (ensuring the large rapidity gap), and the momen-
tum transfer is sufficiently large so that the electroproduced pion does not reinteract with
the target, then there is a one-to-one correspondence [162,163] between the semi-inclusive
process under investigation and ordinary deep inelastic scattering.

The close analogy with DIS suggests that semi-inclusive processes may also exhibit quark-
hadron duality [149,164–166]. It has been argued [162,163] that for W ′ = M , the fully
exclusive limit, quark-hadron duality predicts the energy dependence observed in the γp→
π+n and γp→ γp (Compton scattering) data, but that the absolute normalization is off by
one to two orders of magnitude (see Sec. VE4 below). This may indicate that although
the elementary single quark scattering process also dominates the low-energy semi-inclusive
reaction, even in the nucleon resonance region, the assumption of no final state interactions
with the target is not yet valid. Hence, both scaling and factorization should rather be
viewed as precocious.

Recently there have been several experimental investigations of factorization in semi-
inclusive pion electroproduction in the DIS region. The HERMES Collaboration tested
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FIG. 42. The ratio dv/uv from several high-energy experiments (CDHS at Fermilab and

WA 21/25 at CERN), together with a single point (triangle) extracted from a low-energy measure-

ment at Jefferson Lab [161]. The curves represent various global fits to the data. (Adapted from

Ref. [81].)
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factorization for the light sea quark distributions d̄ and ū, extracted from semi-inclusive pion
electroproduction data on proton and deuteron targets, over the range 13 < ν < 19 GeV
and 21 < W 2 < 35 GeV2, with an average Q2 = 2.3 GeV2. The results were obtained in a
region where the requirement of a rapidity gap of ∆η ≥ 2 was only valid for z > 0.2. Within
limited statistics, the data on the ratio (d̄ − ū)/(u − d) were found to be consistent with
the factorization assumption. The results are shown in Fig. 43, as a function of z, for five
bins in x. The values of (d̄ − ū)/(u − d), averaged over z, can be recast in the form of the
absolute difference d̄− ū assuming a particular parametrization of the u and d distribution
functions.

An alternate method of measuring the flavor asymmetry d̄−ū is via the Drell-Yan reaction
on protons and deuterons, pp(d) → µ+µ−X, which is directly sensitive to the ratio ū/d̄. The
Fermilab E866 Collaboration measured ū/d̄ at an average Q2 = 54 GeV2 [168], and using
the CTEQ4M [169] parameterization of ū+ d̄, converted the ratio into the difference d̄− ū.
Despite a factor of ∼ 20 difference in Q2 between the two experiments, and the different
experimental technique, the data were found to be in remarkable agreement. This suggests
that the factorization assumption may be valid at energies accessible at HERMES.

Finally, some preliminary results have just become available from the E00-108 exper-
iment, recently performed in Hall C at Jefferson Lab to explicitly study duality in pion
electroproduction [161]. A 5.5 GeV electron beam was used to study pion electroproduction
off proton and deuteron targets for Q2 between 1.8 and 6.0 GeV2, for 0.3 ≤ x ≤ 0.55, and
with z in the range 0.35–1.

The preliminary results for the ratio of π+ to π− cross sections for both proton and
deuteron targets are shown in Fig. 44 as a function of W ′ (upper panel) and z (lower panel)
at x = 0.32. At the present stage of analysis the π± cross sections are known to 20%,
although the final analysis will render results to better than 5% accuracy. Due to the choice
of kinematics in this experiment, z > 0.7 directly corresponds to W ′ < 1.6 GeV since Q2

and x are kept nearly constant.
The behavior in the π+/π− ratio for the proton spectrum around z = 0.85 simply corre-

sponds to the behavior of this ratio in the ∆ region (see Sec. VD). Indeed, if one considers
the 1H(e, e′π−)X spectrum as a function of missing mass of the residual system X, one only
sees one prominent resonance around the mass of the ∆. Apparently, above W ′ = 1.6 GeV
there are already sufficient resonances in the missing mass spectra of 1H(e,e′π±)X that the
π+/π− ratio does not show obvious resonance structure and is nearly flat as a function of
W ′ (or, equivalently, z). The π+/π− ratio off deuterium shows a slightly steeper rise with
decreasing W ′ in this region.

Using the deuterium data only, we can extract the ratio of unfavored to favored frag-
mentation functions D−/D+. Here the favored fragmentation function (D+) corresponds to
a pion which contains the struck quark (e.g., a π+ after a u or d̄ quark is struck), while the
unfavored fragmentation function (D−) describes the fragmentation of a quark not contained
in the valence structure of the pion (e.g. a d quark for the π+). This ratio is, to a good
approximation, simply given by D−/D+ = (4 −N π+

/N π−

)/(4N π+

/N π− − 1). The prelim-
inary results are shown in Fig. 45 in comparison with data from the HERMES experiment
[170].

The first observation to draw is that the D−/D+ ratio extracted from the JLab data
shows a smooth slope as a function of z. This simply reflects the smooth rise in the π+/π−
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FIG. 44. The ratio of π+ to π− yields off proton and deuteron targets as a function of W ′

(upper panel) and z (lower panel), at x = 0.32.

ratio off deuterium seen in Fig. 44. This is quite remarkable given that the data cover the full
resonance region, 0.88 < W ′2 < 4.2 GeV2. Apparently, there is some mechanism at work
that removes the resonance excitations in the π+/π− ratio, and hence the D−/D+ ratio.
We will discuss a possible mechanism in Sec. VD, but here will simply mention that this
behavior is consistent with the expectations of an onset of duality. The second observation
is that the behavior as a function of z of D−/D+ measured by E00-108 in the nucleon
resonance region closely resembles the behavior seen in the HERMES experiment [170]. The
D−/D+ ratio measured by E00-108 seems slightly larger than the HERMES ratio, however,
it is premature to draw a final conclusion from this in view of the preliminary state of the
E00-108 analysis.

It would be interesting to experimentally verify the pT dependence of the constructed
D−/D+ ratio. We argued earlier that the pT dependence of pion yields at low W ′ is expected
to reflect the decay angular distributions of the electroproduced resonances. If duality is
valid, however, the pT dependence of the D−/D+ ratio shown in Fig. 44 should be similar to
the dependence found at higher energies, even though the ratio was constructed from pion
yields solely in the resonance region.

In summary, there exist strong hints in electro-pion production data that quark-hadron
duality extends to semi-inclusive scattering. To convert these hints into conclusive evidence
requires a next series of precision semi-inclusive experiments encompassing both the nucleon
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FIG. 45. The ratio of unfavored to favored fragmentation function D−/D+ (at z = 0.55) as a

function of x, using only deuterium data.

resonance and deep inelastic regions. Among the first of them is the E00-108 experiment
at JLab which is currently being analyzed. It has been argued that the existence of quark-
hadron duality in electro-pion production may be linked to low-energy factorization: the
empirical observation of the independence of x and z distributions when selecting a pion that
carries most of the energy transfer. The data shown are in agreement with this postulate.

If the existence of quark-hadron duality in electro-pion production and the applicability
of factorization at lower energy are indeed established experimentally [161], the spin and
flavor dependence of duality can be investigated in detail. More pragmatically, confirmation
of duality in inclusive hadron production would open the way to an enormously rich semi-
inclusive program in the preasymptotic regime, allowing unprecedented access to the spin
and flavor distributions of the nucleon, especially at large x. We will discuss semi-inclusive
scattering in some more detail from a theoretical perspective in Sec. VD, and outline future
challenges for semi-inclusive duality in Sec. VIID.
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V. THEORETICAL FOUNDATIONS

After reviewing the experimental status of duality in electron–nucleon scattering, in this
section we discuss various theoretical approaches which have been developed in an effort to
understand its origin. Because the discovery of Bloom-Gilman duality preceded QCD, much
of the early work was phenomenological or based on effective hadronic descriptions. We shall
discuss some of these in the descriptions of models of duality in Sec. VB below. To begin
with, however, we present what has become the standard framework for discussing duality
in the context of QCD — namely, the operator product, or twist, expansion. Following
this, we will demonstrate the power of duality in phenomenological applications in inclusive
scattering, in semi-inclusive processes, and in exclusive reactions.

A. QCD and the Twist Expansion

The theoretical basis for describing Bloom-Gilman duality in QCD is the operator prod-
uct expansion (OPE) of Wilson [171] and others [12,172], the main elements of which we
shall briefly review here. The quantities most directly amenable to a QCD analysis are the
moments of structure functions. An important point to realize is that the OPE analysis
is intrinsically perturbative, in the sense that a systematic expansion of structure function
moments is performed in terms of inverse powers of a hard scale, Q2. The essence of the
OPE is that it enables one to isolate the “soft”, nonperturbative physics contained in parton
correlation functions, from the “hard” scattering of the probe from the partons.

1. The OPE, Resonances and Duality

According to the OPE, at large Q2 ≫ Λ2
QCD the moments of the structure functions can

be expanded in powers of 1/Q2 [171]. The coefficients in the expansion are matrix elements
of quark & gluon operators corresponding to a certain twist, τ , defined as the mass dimension
minus the spin, n, of the operator. For the n-th moment of the F2 structure function, M

(n)
2 ,

for example (see Eq. (43)), one has the expansion

M
(n)
2 (Q2) =

∞∑

τ=2,4...

A(n)
τ (αs(Q

2))

Qτ−2
, n = 2, 4, 6 . . . (79)

where A(n)
τ are the matrix elements with twist ≤ τ . Note that because of the crossing

symmetry properties of the F2 structure function under ν → −ν (or equivalently x→ −x),
under which F2 is even, the OPE expansion for M

(n)
2 is defined for positive, even integers

n. As the argument suggests, the Q2 dependence of the matrix elements can be calculated
perturbatively, with A(n)

τ expressed as a power series in αs(Q
2).

Similarly, for the spin-dependent g1 structure function, the twist expansion for the n-th
moment Γ

(n)
1 (see Eq. (47)) becomes

Γ
(n)
1 (Q2) =

∞∑

τ=2,4...

µ(n)
τ (αs(Q

2))

Qτ−2
, n = 1, 3, 5 . . . (80)
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Here once again the coefficients µ(n)
τ represent matrix elements of operators with twist ≤ τ ,

and since the g1 structure function is odd under the interchange x → −x, its moments are
related to matrix elements of local operators for positive, odd integers n.

Asymptotically, as Q2 → ∞ the leading-twist (τ = 2) terms in the expansions (79)
and (80) dominate the moments. In the absence of perturbatively generated corrections,
these give rise to the Q2 independence of the structure function moments, and hence are
responsible for scaling. For the spin-averaged moments, the coefficients A

(n)
2 of the twist-2

terms in Eq. (79) are given in terms of matrix elements of spin-n operators,

A
(n)
2 P µ1 · · ·P µn = 〈P |ψ̄ γ{µ1 iDµ2 · · · iDµn}ψ |P 〉 , (81)

where P is the nucleon momentum, ψ is the quark field, Dµ is the covariant derivative, and
the braces {· · ·} denote symmetrization of indices and subtraction of traces. Similarly, for
the moments of the spin-dependent g1 structure the leading-twist contributions are given by

µ
(n)
2 Sµ1P µ2 · · ·P µn = 〈P, S|ψ̄ γµ1 γ5 iD

{µ2 · · · iDµn}ψ |P, S〉 , (82)

where Sµ is the spin vector of the nucleon.

(a) (b) (c)

FIG. 46. (a) Leading-twist (“handbag diagram”) contribution to the structure function.

(b) Higher-twist (“cat’s ears”) four-quark contributions. (c) Higher-twist quark-gluon interactions.

The leading-twist terms correspond to diagrams such as in Fig. 46 (a), in which the vir-
tual photon scatters incoherently from a single parton. The higher-twist terms in Eqs. (79)
and (80) are proportional to higher powers of 1/Q2 with coefficients which are matrix ele-
ments of local operators involving multi-quark or quark-gluon fields (see Sec. VA2 below).
Diagrammatically, these correspond to processes such as those depicted in Fig. 46 (b) and
(c).

The relation between the higher-twist matrix elements and duality in electron scattering
was elucidated in the classic work of De Rújula, Georgi and Politzer [6,47], who reformulated
the empirical observations of Bloom and Gilman in terms of the twist expansion of the
structure function moments in QCD. The connection follows almost immediately from the
definition of the moment expansions in Eqs. (79) and (80). For the F2 structure function,

the lowest moment, M
(2)
2 , corresponds precisely to the Bloom-Gilman integral in Eq. (63).
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At low Q2 the moments display strong Q2 dependence, violating both scaling and duality.
In the OPE language this violation is associated with large corrections from the subleading,
1/Qτ−2 higher-twist terms in Eqs. (79) and (80).

At larger Q2 the moments become independent of Q2, as they would if they were given
entirely by the scaling contribution. According to Eqs. (79) and (80), this duality can only
occur if the higher-twist contributions are either small or cancel. Duality is synonymous,
therefore, with the suppression of higher twists, which in partonic language corresponds to
the suppression of interactions between the scattered quark and the spectator system, as
illustrated in Fig. 46 (b) and (c). In other words, suppression of final state interactions is a
prerequisite for the existence of duality.

Taking the F2 structure function for illustration, the appearance of duality implies that
the moment M

(n)
2 is dominated, even at low Q2, by the leading term, A

(n)
2 . The higher-twist

contributions can be defined as the difference between the total and leading-twist moments,

∆M
(n)
2 (Q2) ≡M

(n)
2 (Q2) − A

(n)
2 (Q2) =

A
(n)
4 (Q2)

Q2
+ O(1/Q4) . (83)

Of course, the suppression or cancellation of the higher-twist terms cannot occur for all
moments n — since higher moments weight the large-x region more than lower moments,
this would require identical x distributions for the resonance and scaling functions, which
clearly cannot occur at any finite Q2. For higher n one expects duality and the onset of
scaling to occur at relatively higher Q2, with nM2

0 ∼ Q2, where M0 is some mass scale, of
the order of the transverse momentum of quarks in the nucleon (∼ 500 MeV) [6].

As elaborated by De Rújula et al. [6], and subsequently by Ji & Unrau [173], there
should exist a region of n and Q2 where the higher-twist contributions become important
but remain perturbative, in the sense that a twist expansion exists in which they can be
isolated. In this region the structure function still exhibits the prominent resonances, which
organize themselves to approximately follow, on average, the deep inelastic scaling function.
Here the physics can be described in terms of either resonance production, or in terms of
scattering from partons [173]. Note that since the resonances are bound states of quarks
and gluons, they necessarily involve (an infinite number of) higher twists. The low-lying
resonances contribute significantly to the low moments, but the overall size of the higher
twists is not overwhelming. The extent to which Bloom-Gilman duality holds then reflects
the size of this region. For higher moments nM2

0
>∼ Q2, the higher-twist terms become more

important than the leading-twist, so that the twist expansion diverges, and the OPE ceases
to be reliable as a means of organizing the different structure function contributions.

The interplay between resonances and higher twists can be dramatically illustrated by
considering the contribution from the resonance region, traditionally defined (as in Sec. IV)
as that restricted to W < Wres = 2 GeV, to moments of the structure function as a function
of Q2. For the proton F p

2 structure function the resonance contribution to the moment M
(n)
2

is given by

M
(n)
2,res(Q

2) =
∫ 1

xres

dx xn−2 F2(x,Q
2) , (84)

where xres = Q2/(W 2
res − M2 + Q2). The ratios of the resonance contributions M

(n)
2,res to

the total moments is illustrated in Fig. 47 for the n = 2, 4, 6 and 8 moments. At Q2 =
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FIG. 47. Ratio of the n = 2, 4, 6 and 8 moments of the proton F p
2 structure function from the

resonance region, W < 2 GeV, to the total. (Adapted from Ref. [173].)

1 GeV2 approximately 70% of the cross section integral (or the n = 2 moment) comes from
the resonance region, W < Wres. Despite this large resonant contribution, the resonances
and the deep inelastic continuum conspire to produce only about a 10–15% higher-twist
correction at the same Q2, as Fig. 48 demonstrates. Here the total M

(2)
2 moment from

recent proton measurements in Hall C at Jefferson Lab [99] is plotted as a function of Q2,
together with the leading-twist contribution calculated from the PDF parameterization of
Ref. [67]. Remarkably, even though each bound state resonance must be built up from a
multitude of twists, when combined the resonances interfere in such a way that they closely
resemble the leading-twist component!

A similar duality can be studied in polarized structure functions. Defining the resonance
contribution to the n-th moment of the g1 structure function as

Γ
(n)
1,res(Q

2) =
∫ 1

xres

dx xn−1 g1(x,Q
2), (85)

Edelmann et al. [175] considered the ratio of Γ
(n)
1,res to the total n-th moment for the proton,

displayed in Fig. 49 for n = 1, 3, 5 and 7. The resonance contributions to the moments Γ
(n)
1

are quite sizable, especially for higher moments. At Q2 = 1 GeV2 they are responsible for
about 50% of the first moment, Γ

(1)
1 , and essentially saturate the higher moments. At large

Q2 the continuum contributions with W > Wres take over.
On the other hand, the interference between the resonances and the deep inelastic con-

tinuum leads to relatively small higher-twist corrections, which, as for the F2 structure
function, can be defined as the difference between the total and leading-twist contribution,

∆Γ
(n)
1 (Q2) ≡ Γ

(n)
1 (Q2) − µ

(n)
2 (Q2) =

µ
(n)
4 (Q2)

Q2
+ O(1/Q4) . (86)
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FIG. 48. Total n = 2 moment of the proton F p
2 structure function (squares) and the lead-

ing-twist contribution (solid line) [99].

Because the spin-dependent structure functions do not need to be positive, however, the
cancellations here will not be as dramatic as in the unpolarized case. For the n = 1 moment
of gp

1, for instance, the higher-twist contribution is now about a 20–25% of the total (see
Fig. 50 below). Similarly for the higher moments, the rather large resonant contributions
nonetheless integrate to produce a relatively small higher-twist correction. At Q2 = 2 GeV2

one finds that the n = 3 moment is composed of ∼ 75% resonances, whereas only ∼ 40% of
the moment comes from higher twists [175].

These simple comparisons illustrate the important point that the often quoted distinction
between the resonance and deep inelastic regions is, in fact, artificial. In reality, resonances
are an integral part of the nucleon structure function, and can never be avoided in a moment
analysis. In other words, if scaling is defined as the Q2 independence of structure function
moments, then the resonance region qualifies as a scaling regime! This will be discussed in
greater detail in Sec. VB1 within specific resonant models of structure functions.

2. Physics of Higher Twists

In the context of global analyses of parton distributions, higher-twist effects are often seen
as unwelcome complications. On the other hand, higher twists contain valuable information
on nucleon structure – no less fundamental than that contained in leading twists – and are
therefore of tremendous interest in their own right.

The previous discussion points to an important practical consequence of the duality
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FIG. 49. Contribution to the moments Γ
(n)
1 from low mass excitations with W < Wres relative

to the full moments, for n = 1, 3, 5 and 7. From Ref. [175].

between resonances and scaling in deep inelastic scattering. Namely, if one knows the size of
the higher-twist contributions, either experimentally or theoretically (e.g., from lattice QCD
calculations), one can use this to extract the properties of the resonances. Conversely, from
data on the structure function in the resonance region one can extract matrix elements of
higher-twist operators. This use of duality is well known in QCD sum rule calculations, as
well as in applications to other physical processes (see Sec. VI). In this section we examine
the physics content of the higher-twist matrix elements, and illustrate how duality can be
used to obtain information about higher-twist effects in the nucleon from structure function
data in the intermediate-Q2 region.

Before proceeding, we should point out that since the perturbative expansion in αs

is expected to be divergent (the coefficients of the higher-order terms grow like n!), and
the separation of the radiative (logarithmic) and twist (power) expansions in Q2 may be
ambiguous [176]. The uncertainty in regularizing the divergent series is closely related to the
precise definition of the higher-twist contributions. The practical solution adopted in many
higher-twist analyses [173,175,177,178] is to utilize the available perturbative calculations
up to a given order, and define the leading-twist contribution to that order. As long as one
works in a region of Q2 where the first higher-twist term is much larger than the smallest
term in the perturbative expansion (so that adding higher-order terms in αs will not improve
the accuracy of the expansion), the ambiguity in defining the higher-twist corrections can
be neglected.

Taking the experimental moments of the proton F p
2 structure function, Ji and Unrau

[173] showed how information on the coefficients of the twist-4 operators can be extracted
from data at intermediate Q2. More recent higher-twist analyses of F p

2 moments measured
at JLab were made by Armstrong et al. [80] and Osipenko et al. [179]. Any such extraction
relies on knowledge of the twist-2 contributions, including higher-order corrections in αs,
which must be subtracted from the total. For the n = 2 moment of F2, the leading-twist
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contribution corresponds to the momentum carried by quarks,

A
(2)
2 (Q2) =

∑

q

e2q

∫ 1

0
dx x

(
q(x,Q2) + q̄(x,Q2)

)
, (87)

with the sub-leading 1/Q2 correction given by

A
(2)
4 (Q2) = M2

(
1

2
A

(2)
4,TMC(Q2) + Ã

(2)
4 (Q2)

)
. (88)

Here A
(2)
4,TMC is a target mass correction, which arises from the kinematical Q2/ν2 corrections

in the OPE analysis, and which would vanish for a massless target. Formally this is a matrix
element of the τ = 2 operator in Eq. (81) with n = 4. At Q2 = 1− 2 GeV2, the target mass

term A
(2)
4,TMC amounts to around 4% of the total moment. The coefficient Ã

(2)
4 represents

matrix elements of genuine τ = 4 operators [94,173,180,181], and is given by

2Ã
(2)
4

(
P µP ν − gµνM2

)
=
∑

q,q′
eqeq′〈P |

1

2
g2ψ̄qγ

{µγ5t
aψqψ̄q′γ

ν}γ5t
aψq′

+
5

16
g2ψ̄qγ

{µtaψqψ̄q′γ
ν}taψq′

+
1

16
gψ̄qiD

{µG̃ν}λγλγ5ψq′ δqq′|P 〉 , (89)

where G̃µν = 1
2
ǫµναβGαβ is the dual gluon field strength tensor, ta are color SU(3) matrices,

and g is the strong coupling constant. The first and second terms in Eq. (89) represent
four-quark operators (in general nondiagonal in quark flavors q, q′), corresponding to the
“cat’s ears” diagram in Fig. 46 (b), while the third term represents a quark-gluon mixed
operator such as that represented in Fig. 46 (c).

The higher-twist contribution is ∼ 10 − 15% of the total at Q2 ∼ 1–2 GeV2, as seen in
Fig. 48. The Q2 dependence of the higher-twist operators is governed by the appropriate
anomalous dimensions of the twist-4 operators [180], which results in a (logarithmic) Q2

dependence of the matrix element Ã
(2)
4 (Q2). For all n <∼ 10, Ã

(n)
4 remains approximately

constant, in contrast to the rapidly decreasing size of the leading-twist moment, A
(n)
2 , as

shown in Fig. 47. Phenomenologically, this reflects the fact that at fixed Q2 the higher-twist
corrections become more significant for higher moments, which stems from the increased
number of twist-4 operators [173]. For n = 4, the twist-4 term is as large as the leading
twist at Q2 ≈ 2 GeV2, while for larger n the higher twists dominate at this Q2. It has been
suggested [173] that the twist expansion breaks down when the higher-twist corrections
exceed ∼ 50% of the leading twist.

Of course, neglecting 1/Q6 and higher corrections in such an analysis is only justified as
long as Q2 is not too small. Since the twist expansion is believed to be controlled by a scale
related to the average transverse momentum of quarks in the nucleon [47], typically of the
order 0.4–0.5 GeV [173,47], one may expect that the role of twist-6 effects should not be
significant for Q2 > 1 GeV2, and not overwhelming for Q2 >∼ 0.5 GeV2 [177].

Information on the spin dependence of higher twists can be extracted from moments of
the polarized g1 and g2 structure functions [175,177,182,183]. At leading twist, the n = 1
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moment of the g1 structure function can be written in terms of the helicity-dependent quark
distributions, ∆q = q↑ − q↓,

µ
(1)
2 (Q2) =

1

2

∑

q

e2q

∫ 1

0
dx

(
∆q(x,Q2) + ∆q̄(x,Q2)

)
, (90)

which can in turn be related to the axial vector charges of the nucleon. The triplet and octet
charges are known from neutron and hyperon β-decay, while the singlet axial charge is in-
terpreted in the quark-parton model as the total spin of the nucleon carried by quarks.
The higher-twist contributions to the lowest moment Γ

(1)
1 contain information on spin-

dependent quark-gluon correlations, and in particular on the color polarizabilities of the
nucleon [184,185], which describe how the color electric and magnetic gluon fields respond
to the spin of the nucleon.
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FIG. 50. (Left panel) Lowest moment of the proton gp
1 structure function. The points are from

a reanalysis of world data by Osipenko et al. [183]; the error bars give statistical uncertainties only,

while the systematic and low-x extrapolation errors are given by the shaded band. (Right panel)

Lowest moment of the neutron gn
1 structure function [182]. The error bars are a quadratic sum of

statistical and systematic errors. The shaded band represents the uncertainty on the leading-twist

contribution due to αs, and the dashed curve indicates the elastic contribution.
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The lowest moment of the proton g1 structure function is shown in Fig. 50 (left panel).
The data points are from a reanalysis [183] of world data in which different experiments
were combined using a consistent set of assumptions for the low-x extrapolations, beyond
the measured region. The elastic component of Γp

1 is seen to make a sizable contribution
at low Q2, and in fact dominates the moment below Q2 ≈ 0.5 GeV2. For Q2 >∼ 2–3 GeV2

the moment is effectively saturated by the leading-twist contribution, µ
(1)
2 . At Q2 <∼ 2 GeV2

a noticeable difference between the total and leading-twist moments starts to appear, in-
dicating the presence of higher twist effects. The corresponding neutron moment is shown
in Fig. 50 (right panel). The data are from various experiments at SLAC, CERN, DESY
and JLab, and have also been reanalyzed [182] to ensure the same low-x extrapolations are
applied to all the data sets. The difference between the leading-twist contribution (shaded
band) and the data is smaller in this case, within the errors, suggesting that the higher
twists may be relatively small even for Q2 <∼ 1 GeV2.

The size of the higher twists can be quantified by subtracting µ
(1)
2 from the total mo-

ment. The leading term in the difference is the 1/Q2 correction, µ
(1)
4 , which can written as

[177,178,180]

µ
(1)
4 (Q2) =

1

9
M2

(
a2(Q

2) + 4d2(Q
2) + 4f2(Q

2)
)
. (91)

Here a2 is related to the target mass corrections (which are formally twist-2), whose role
has also been emphasized in Refs. [82,103,186] in discussions of the x dependence of the
higher-twist contributions, especially at large x. The term d2 is a twist-3 matrix element
given by the second moment of the (leading-twist parts of the) g1 and g2 structure functions,

d2(Q
2) =

∫ 1

0
dx x2

(
2g1(x,Q

2) + 3g2(x,Q
2)
)
. (92)

Note that the x2 weighting in the integrand places greater emphasis on the large-x region,
and implies a greater role for the resonance contributions which populate this region. The
f2 term corresponds to the matrix element of a twist-4 operator involving both quark and
gluon fields [180,184,185],

f2(Q
2) M2Sµ =

1

2

∑

q

e2q 〈P, S| g ψ̄q G̃
µνγν ψq |P, S〉 . (93)

Note that the sign convention here follows that in Refs. [108,182,183,187], and is opposite
to that adopted in Ref. [177]. The Q2 dependence of the higher-twist matrix elements is
given by the respective anomalous dimensions, which have been calculated by Shuryak &
Vainshtein [180].

Fitting the proton data for Q2 > 1 GeV2, the analysis in Ref. [183] extracted a value for
the f p

2 matrix element (normalized at a scale Q2 = 1 GeV2) of

f p
2 = 0.039 ± 0.022 (stat.) ± 0.000

0.018 (sys.) ± 0.030 (low x) ± 0.007
0.011 (αs) , (94)

where the first and second errors are statistical and systematic, respectively, the third is due
to the low-x extrapolation, and the last arises from the uncertainty in the value of αs at low
Q2. For the neutron data in Fig. 50, a best fit for the Q2 > 0.5 GeV2 data gives
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fn
2 = 0.034 ± 0.043 , (95)

where the error includes statistical and (the more dominant) systematic uncertainties, as
well as from the x→ 0 extrapolation.

One should note, however, that the extracted higher-twist contribution depends some-
what on the size of the τ = 2 contribution. In particular, the best fits to the individual
proton and neutron data sets give rise to different central values of the singlet axial charge,
∆Σ: ∆Σ(p) = 0.15 ± 0.11 from the proton data, and ∆Σ(n) = 0.35 ± 0.08 from the neutron
data. While consistent within errors, this does suggest a need for higher-precision data on
gp,n
1 at higher Q2 to test the assumptions which go into polarized structure function analyses.

The extracted values of f2 can be combined with the previously measured d2 matrix
element to provide information on the color electric (χE) and magnetic (χB) polarizabilities
of the nucleon [185],

χE 2M2~S = 〈P, S| ~ja × ~Ea |P, S〉 = 2M2~S
1

3
(4d2 + 2f2) , (96)

χB 2M2~S = 〈P, S| j0
a
~Ba |P, S〉 = 2M2~S

1

3
(4d2 − f2) , (97)

where ~Ea and ~Ba are the color electric and magnetic fields, and jµ
a is the quark current [184].

The color polarizabilities reflect the response of the color electric and magnetic fields in the
nucleon to the nucleon spin, ~S [184,185]; the sign on χB, for instance, reflects the direction
of the color magnetic field with respect to the polarization of the proton. With the values
for f2 in Eqs. (94) and (95), and the results for dp

2 from the global analysis in Ref. [183] and
dn

2 from the SLAC E155 measurement [141], one finds

χp
E = 0.026 ± 0.028 , χp

B = −0.013 ∓ 0.014 (98)

χn
E = 0.033 ± 0.029 , χn

B = −0.001 ± 0.016 (99)

where the errors have been added in quadrature. These results indicate that both the color
electric and magnetic polarizabilities in the proton and neutron are relatively small, with
the central values of the color electric polarizabilities being positive, and the color magnetic
zero or slightly negative.

The small values of the higher-twist corrections, in both polarized and unpolarized struc-
ture functions, suggest that the long-range, nonperturbative interactions between quarks and
gluons in the nucleon are not as dominant at Q2 >∼ 1 GeV2 as one may have expected. For
the polarized neutron moment, they may even play a minor role down to Q2 ≈ 0.5 GeV2.
This would imply strong cancellations between neutron resonances resulting in the domi-
nance of the leading-twist contribution to Γn

1 . If so, it would be a spectacular confirmation
of quark-hadron duality in spin-averaged and spin-dependent structure functions.

At lower values of Q2 (Q2 <∼ 0.5 GeV2) there will be significant contributions from
even higher twists (τ = 6 and higher) which will eventually render the perturbative twist
expansion unreliable. On the other hand, structure functions and their moments have been
measured to very low Q2, and a theoretical understanding of the transition to the real photon
limit is necessary for a complete description of the quark structure of the nucleon. In the
next section we discuss the behavior of structure functions in the limit Q2 → 0, and how
duality may be realized even in this extreme case.
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3. The Transition to Q2 = 0

As Q2 decreases from the perturbative regime, eventually a description of the structure
function in terms of scattering from a few parton constituents becomes unreliable. For
Q2 ∼ Λ2

QCD a perturbative expansion in αs ceases to be meaningful, as obviously does an
expansion in terms of powers of 1/Q2. When Q2 is close to the real photon limit, Q2 ≪ Λ2

QCD,
an expansion in powers of Q2 may instead become more relevant. Here one may resort to
effective field theory techniques, such as chiral perturbation theory, to describe structure
functions, or their moments, in terms of hadronic degrees of freedom. Nevertheless, as one
traverses through the intermediate-Q2 region, where neither the perturbative high-energy
nor effective low-energy expansion schemes are applicable, physical quantities should still
remain smooth functions of Q2, and some sort of duality may still hold in terms of variables
other than Q2.

There are indeed some empirical indications which suggest the existence of a duality
between resonances and continuum cross sections even at the real photon point, Q2 = 0.
This may at first sight be surprising since the physics at Q2 = 0 is in some ways qualitatively
different from that applicable for deep inelastic scattering at large Q2. The former limit is
dominated by purely coherent processes, with cross sections generically proportional to the
squares of sums of charges of the interacting quarks, (

∑
q eq)

2. Processes at large Q2, on the
other hand, are dominated by incoherent scattering from individual quarks in the nucleon,
with a strength proportional to sums of squares of the individual quark charges,

∑
q e

2
q . The

difference between these is then a sum over the nondiagonal contributions,
∑

q 6=q′ eqeq′ , which
in general can be as large as the terms diagonal in eq [188]. Despite this, for real photons
the nondiffractive contribution to the ratio of the total neutron to proton cross sections is
empirically found to be

σγn

σγp
∼ 2

3
≡ 2e2d + e2u

2e2u + e2d
. (100)

The ratio thus behaves as if it were given by the squares of constituent quark charges, even
though there is no reason for the dominance of the incoherent terms when Q2 = 0.

In fact, some oscillations around the high-energy behavior can be seen in the total
photon–proton cross section, σγp, at low ν, as illustrated in Fig. 51. The high-energy
“scaling” curve here is a fit to the large-s data by Donnachie & Landshoff [189] using a
Regge-inspired model in which the total γp cross section is parameterized by the sum of
diffractive and nondiffractive components,

σγp = X (2Mν)αIP−1 + Y (2Mν)αIR−1 , (101)

where for real photons one has 2Mν = s −M2, with s the total γp center of mass energy
squared. The exponents αIP = 1.0808 and αIR = 0.5475 are fitted to pp and pp̄ total
cross section data, and the coefficients X and Y are given by X = 0.0677 and Y = 0.129.
Numerically the exponents αIP and αIR are found to be very similar to the intercepts of the
Pomeron and Reggeon (ρ meson) trajectories, respectively. Although the parameters were
fitted to the

√
s >∼ 6 GeV data, the fit appears on average to go through the resonance data

at low
√
s (even at Q2 = 0!).
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FIG. 51. Total inclusive photoproduction cross section data for the proton as a function of the

center of mass energy,
√
s, compared with a parameterization (dashed curve) of the high energy

data. From Ref. [190].

The behavior of the structure functions in the Q2 → 0 limit is to some extent constrained
by global symmetries. In particular, electromagnetic current conservation requires that
qµWµν = qνWµν = 0, where Wµν is the electromagnetic hadronic tensor (see Eq. (7)). The
requirement that there be no kinematical singularities at Q2 = 0 implies that for fixed ν,
the F1 and F2 structure functions at small Q2 must behave as

F2 = O(Q2) , (102)

F1 +
p · q
q2

F2 = O(Q2) . (103)

Since at fixed ν one has x ∼ Q2, this implies that the longitudinal structure function FL is
suppressed by an additional power of Q2 compared with F2 in the Q2 → 0 limit. In terms of
the cross sections for scattering of transversely and longitudinally polarized photons, σT and
σL, respectively, the structure functions in the Q2 → 0 limit can be written as (cf. Eqs. (19)
& (21))

F2 →
Q2

4π2α
(σT + σL) , (104)

FL → Q2

4π2α
σL . (105)

Because only transversely polarized photons contribute to the total cross section σγp in the
Q2 → 0 limit, σL must vanish for real photons, in which case
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σγp = σT + ǫ σL → σT as Q2 → 0 , (106)

where ǫ is the virtual photon polarization factor (see Eq. (17)). At Q2 = 0 the total
(transverse) cross section remains finite, which implies that the F2 structure function must
vanish linearly with Q2,

F2(x,Q
2) → Q2 as Q2 → 0 , (107)

while the FL structure function vanishes as

FL(x,Q2) → Q4 as Q2 → 0 , (108)

and therefore the longitudinal to transverse ratio

R(x,Q2) =
σL

σT
→ Q2 as Q2 → 0 . (109)

Note that each of these kinematical constraints is a direct consequences of electromagnetic
gauge invariance. In the case of neutrino scattering, where there are no such constraints on
the axial vector current, the neutrino structure function F ν

2 does not vanish in the Q2 → 0
limit, but by PCAC is proportional to the total πp cross section, F ν

2 ∼ σπp → constant.
Donnachie & Landshoff [191] have also fitted the proton F2 structure function at low

Q2 using a Regge-inspired model for the parton distributions, modified to incorporate the
kinematical Q2 → 0 constraint in Eq. (107). Using two simple powers of x, in analogy with
the total cross section fit in Eq. (101), each multiplied by a simple function of Q2, they
parameterize the Q2 → 0 behavior as [191]

F2(x,Q
2) ∼ A x1−αIP

(
Q2

Q2 + a

)αIP

+ B x1−αIR

(
Q2

Q2 + b

)αIR

, (110)

with A and B constrained to reproduce the photoproduction limit in Eq. (101).
A more intuitive interpretation of the Q2 dependence of the low-Q2 structure function

was provided by Badelek & Kwiecinski [192] through a generalization of the vector meson
dominance (VMD) model. The VMD model is a quantitative realization of the fact that
photon interactions with the nucleon proceed via the hadronic components of the photon
wave function, which at low Q2 are largely saturated by the ρ, ω and φ meson contributions
[193]. In the generalized VMD model the F2 structure function is given by two terms,

F2(x,Q
2) = F light

2 (x,Q2) + F heavy
2 (x,Q2) , (111)

representing contributions from light and heavy vector meson states. The former is given
by [192]

F light
2 (x,Q2) =

Q2

4π

∑

v=ρ,ω,φ

m2
v σv(s)

γ2
v(Q

2 +m2
v)

2
, (112)

where σv is the vector meson–nucleon total cross section, and the coupling γv is related to
the leptonic width of the vector meson,
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γ2
v =

α2πmv

3 Γv→e+e−
. (113)

At large Q2 the low-mass contributions vanish since F light
2 (x,Q2) ∼ 1/Q2. The scaling of the

structure function is modeled by including contributions from an infinite number of vector
meson states heavier than some mass M0,

F heavy
2 (x,Q2) = Q2

∫ ∞

M2
0

dQ′2 Φ(Q′2, s)

(Q2 +Q′2)2
, (114)

where

Φ(Q2, s) = −1

π
ℑm

∫ −Q2 dQ′2

Q′2
F asym

2 (x′ =
Q′2

s−M2 +Q′2
, Q′2) . (115)

As Q2 → ∞ the function F heavy
2 approaches the asymptotic (scaling) structure function

F asym
2 . Badelek & Kwiecinski [192] further simplify the heavy vector meson contribution by

taking

F heavy
2 (x,Q2) =

Q2

Q2 +M2
0

F asym
2 (x̄, Q2 +M2

0 ) , (116)

where x̄ = (Q2 +M2
0 )/(s−M2 +Q2 +M2

0 ), which preserves the analytic properties of the
representation in Eq. (114). Although the low-mass vector meson component dominates
F2 at low Q2, the large-mass, partonic contribution still gives ∼ 20–30% of the total at
Q2 ∼ 1 GeV2.

Other models and parameterizations of structure functions at low Q2 are reviewed in
Ref. [194]. While these parameterizations provide satisfactory fits to the low-Q2 data, they
do not in themselves provide answers to the question of whether gauge invariance is the only
physics which underlies the transition to Q2 = 0, or whether there is additional dynamics
which drives the transition. Some clues to this question may be provided by the low-Q2 data
on F p

2 (x,Q2) measured recently at Jefferson Lab [58]. The experiments there found that the
F p

2 structure function at low Q2 does not follow the linear ∼ Q2 behavior that would be
expected from gauge invariance constraints alone, but instead behaves as F2 ∼ Q0.5 down
to Q2 ∼ 0.3 GeV2, as displayed in Fig. 52. This indicates that these values of Q2 are
still transitional, and that lower Q2 is needed before the behavior becomes driven by gauge
invariance.

Furthermore, Niculescu et al. [58] found that the F p
2 structure function at low Q2, when

averaged over resonances, behaves much like the xF3 structure function measured in neutrino
scattering which is determined by valence quarks only — see Fig. 17. The valence-like
behavior of F p

2 at low Q2 is shown in Fig. 53 for various spectra ranging fromQ2 = 0.06 GeV2

to 9 GeV2. This suggests that at low Q2 the F2 structure function is dominated by valence
quarks, with contributions from the sea suppressed. Such an interpretation would support a
two-component duality picture in which the valence quark (nondiffractive) contributions are
dual to resonances, while sea quark (diffractive) contributions are dual to the nonresonant
background [20,34,35] (see Sec. IIIA 2 above).
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FIG. 52. Q2 dependence of JLab F p
2 data at low x andQ2. The solid lines connect the resonance

(JLab) and DIS data (light shaded circles), and consistently represent a F p
2 ∼ Q0.5 behavior. The

dotted lines denote perturbative QCD predictions from Ref. [82]. (Adapted from Ref. [58].)

Additional insights into low-Q2 dynamics may be obtained by comparing the expected
behavior of the longitudinal cross section, or the R ratio, with low-Q2 data. For instance,
Badelek et al. [195] parameterize FL using a model based on the photon–gluon fusion mech-
anism, suitably extended to low Q2, and calculate R utilizing a parameterization of F2 from
Ref. [192]. The predictions for the Q2 dependence of R(x,Q2) at x = 0.1 are displayed
in Fig. 54, using several different gluon distribution functions. Included in the longitudi-
nal structure function is a higher-twist contribution associated with the exchange of a soft
Pomeron with intercept equal to unity [195]. The overall low-Q2 behavior of FL is ∼ Q4, as
required from Eq. (108), leading to an approximately linear Q2 dependence of R as Q2 → 0.
While slightly below the earlier SLAC data at Q2 ∼ 1 GeV2, the parameterization signifi-
cantly underestimates the new Jefferson Lab data at smaller Q2 values. As for the F p

2 case,
the low Q2 data on R indicate that at values as low as Q2 ∼ 0.2 GeV2 there appear to be
additional dynamics responsible for the Q2 dependence, beyond that expected from gauge
invariance constraints alone.

Further progress in revealing the dynamics of the Q2 → 0 transition can be made with
additional data on spin-dependent structure functions at low Q2. For the g1 and g2 structure
functions there are no gauge invariance constraints as for F2 and FL, although sum rules
such as the Gerasimov-Drell-Hearn (Eq. (67)) and Burkardt-Cottingham (Eq. (73)) sum
rules provide some constraints on their moments at Q2 = 0 (see Secs. IVC3 and IVC4). A
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FIG. 53. F p
2 structure function versus the Nachtmann scaling variable ξ, illustrating valence-like

behavior at low ξ and Q2. (Adapted from Ref. [58].)

parameterization similar to that for the F2 structure function was recently constructed by
Badelek et al. [196] for g1 at low Q2 within the generalized VMD model.

Beyond phenomenological studies, the theoretical tools currently available are unable to
provide us with quantitative understanding from first principles in QCD of the nature of the
low-Q2 region, where neither the twist expansion nor effective field theories are applicable.
In the absence of a rigorous theoretical framework, one can instead resort to models of QCD
to obtain clues about the physics governing the transition. In the next section we discuss the
insight into the origin of scaling and low-Q2 duality which can be garnered from dynamical
models of structure functions.

B. Scaling and Duality in Dynamical Models

Although Bloom-Gilman duality for structure function moments at intermediate and
high Q2 can be analyzed systematically within a perturbative operator product expansion,
an elementary understanding of the origins of duality for structure functions as a function
of x and Q2 is more elusive. This problem is closely related to the question of how to build
up a scaling (Q2-independent) structure function entirely out of resonances [197], each of
which is described by a form factor that falls rapidly with increasing Q2. The description
of Bjorken scaling in DIS structure functions is of course most elegantly formulated within
the QCD quark-parton model, which is justified on the basis of asymptotic freedom. On
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FIG. 54. Comparison of the calculated R ratio as a function of Q2 at x = 0.1 for various input

gluon distributions. Adapted from Ref. [195], with new data from JLab Experiment E94-110 [174].

These new data have an additional point-to-point systematic uncertainty of 0.1 (not shown).

the other hand, the physical final state is comprised entirely of hadrons, so it must also be
possible, in the general sense of quark-hadron duality, to describe the process in terms of
hadronic degrees of freedom (resonances and their decays) alone. Figure 55 is a schematic
illustration of this duality. How to obtain a scaling function from a sum over resonances,
and how to reconcile this with the perturbative description, is the key to understanding the
origins of duality, and we focus on these aspects in this section.

We saw in Sec. VA2 above that the appearance of duality results directly from the ab-
sence of, or cancellations between, higher twists in structure functions. This means that final
state interactions between the scattered quark and the remnants of the hadronic target are
suppressed, and the process can be described in terms of incoherent scattering from individ-
ual, free quarks. The nonexistence of final state interactions in the presence of confinement
is not at all obvious, however. While factorization of the hard and soft parts of the Compton
scattering amplitude has been demonstrated within the operator product expansion in per-
turbation theory, no derivation exists nonperturbatively. In the absence of a first principles
proof, various methods and models have been developed to examine the intriguing question
of how confined constituents of hadrons respond asymptotically as if they were free. We
shall see that a critical element in the appearance of scaling in terms of hadronic degrees of
freedom is access to a complete set of hadronic states.

In this section we review several studies which illustrate how scaling can be compatible
with the presence of confining interactions. Following this, we examine in more detail how
the region dominated by resonances merges into the scaling region, and illustrate the onset
of duality between the resonance-averaged and asymptotic structure functions within simple
models. Finally, having demonstrated the mechanisms by which summation over hadronic
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N

2

Σ
N*N*N*

FIG. 55. Schematic illustration of quark-hadron duality in inclusive electron–nucleon scatter-

ing: at high energy summation over excited states N∗ (left) is equivalent to the leading-twist,

parton model result, given by the imaginary part of the virtual Compton scattering amplitude

(right).

states can dual the free quark cross sections, we apply these ideas to phenomenological
examples in which resonances at high Q2 can be used to constrain the large-x behavior of
structure functions, and vice versa.

1. Confinement and Scaling

One of the central mysteries in strong interaction physics, and a key to the question of the
origin of duality, is how scattering from bound (confined) states of quarks and gluons in QCD
can be consistent with scaling — a property synonymous with scattering from free quarks.
To illustrate this dual nature of the strong interactions, we consider several pedagogical
examples where this transition is demonstrated explicitly. Starting from a discussion of
scaling in the simplified case of QCD in 1+1 dimensions and in the limit of a large number
of colors, Nc, we then consider models with increasing levels of sophistication, before finally
progressing to more phenomenological descriptions. A common feature in each of the model
discussions will be closure, or access to a complete set of hadronic states which dual the
partonic scattering process. These examples also demonstrate that the distinction between
scattering to hadronic final states (resonances) and to the continuum (scaling) is somewhat
spurious, and that resonances are in fact an integral part of the scaling structure function.

a. Large Nc Limit Perhaps the simplest, and most graphic, demonstration of the in-
terplay between resonances and scaling is in QCD in the large-Nc limit. In the case of
qq̄ bound states, in this limit the hadronic spectrum consists entirely of infinitely narrow,
noninteracting resonances of increasing mass. On the other hand, since no element of the
perturbative QCD results for deep inelastic scattering depends on Nc, at the quark level one
still obtains a smooth scaling structure function. Therefore in the large-Nc world duality
must be invoked even in the scaling limit!

The derivation of a scaling function from largeNc resonances was demonstrated explicitly
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for the case of one space and one time dimension [198]. QCD in 1+1 dimensions in the
Nc → ∞ limit, known as the “’t Hooft model” [199,200], is an exactly soluble field theory,
in which all hadronic Green’s functions are calculable in terms of quark degrees of freedom.
In the large-Nc limit, even in lowest order, the exchange of a massless gluon between quarks
corresponds to an attractive qq̄ potential which rises linearly with r (compared with the 3+1
dimensional case which gives rise to a Coulombic 1/r potential). Therefore confinement is
an almost trivial consequence in the ’t Hooft model. Furthermore, simply by power counting
one can show that the theory is asymptotically free, which automatically leads to Bjorken
scaling in structure functions.

The essential simplification which allows one to solve the 1+1 dimensional theory non-
perturbatively is the freedom to choose gauges in which the gluon self-coupling vanishes.
Only ladder diagrams thus need to be computed for qq̄ interactions, in addition to rainbow
diagrams for wave function and mass renormalization [199]. The infrared behavior of the
qq̄ bound state wave functions and the bound state spectrum can then be determined by
solving a Bethe-Salpeter equation (also known as the ’t Hooft equation in this application)
[199],

µ2
n φn(x) =

(
γq − 1

x
+
γq̄ − 1

1 − x

)
φn(x) − Pr

∫ 1

0

dy φn(y)

(y − x)2
, (117)

where φn(x) can be interpreted (in the infinite momentum frame) as the probability ampli-
tude for finding the quark q in the n-th qq̄ bound state, with light-cone momentum fraction
x. Here µn is the bound state mass, γq(q̄ = (π/g2Nc) m

2
q(q̄), and the coupling constant g has

dimensions of mass.
In this model confinement follows from the fact that

Pr
∫ 1

0

dy φn(y)

(y − x)2
= 0 (118)

at the values of x where φn(x) would develop poles. The color singlet spectrum then contains
an infinity of stable qq̄ bound states, with no qq̄ continuum. Finite widths of resonances only
appear as 1/Nc corrections to the theory. The functions φn(x) can be solved numerically, for
instance using the Multhopp technique discussed in Refs. [201,202]. For the lowest energy
state, n = 0, one has φ0 = 1. As x→ 0 or 1, the distribution functions vanish as a power of
x. For large n, the functions φn behave as [200,203]

φn(x) →
√

2 sin(µ2
nx/π) , (119)

with µ2
n ∼ nπ2.

If all the states in the 1+1 dimensional theory are stable bound states, how is it that
one can obtain scaling from a sum over resonances? To address this question, Einhorn
[198] calculated the deep inelastic structure function of the n-th qq̄ bound state. In 1+1
dimensions there is only one structure function, denoted by Wn(Q2, ν), where ν = p · q/µn.
Since the only final states which contribute at leading order in 1/Nc are single-meson states,
one can calculate the imaginary part of the Compton scattering amplitude by squaring the
n→ m transition form factors,
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Wn ∝
∑

m

∣∣∣F q
nm(Q2) + F q̄

nm(Q2)
∣∣∣
2
δ((p+ q)2 − µ2

n) . (120)

Note that on dimensional grounds, in 1+1 dimensions the scaling function would correspond
to ν2Wn. As Q2 → ∞, one can smooth the δ-functions by replacing the sum over m with
an integral, with µ2

m ∼ mπ2 → ∞ (this is where the implicit use of duality alluded to
above enters). In this limit the transition form factors are simply given in terms of the wave
functions φn [198],

F q
nm(Q2) ∼ (−1)m

Q2
eq mq xφn(x) , (121)

and similarly for the q̄ contribution. Squaring and performing the integral over m then gives
the structure function in the Q2, ν → ∞ limit [198],

ν2 Wn(Q2, ν) = 2π2
(
e2q m

2
q φ

2
n(x) + e2q̄ m

2
q̄ φ

2
n(1 − x)

)
. (122)

In addition to the diagonal terms, Eq. (122) also contains an interference term proportional
to (−1)m eq eq̄ φn(x) φn(1 − x), which is analogous to the higher-twist terms (associated
with four-quark operators) discussed in Sec. VA2. The phase (−1)m = exp(−i(p + q)2/π)
oscillates infinitely rapidly as (p + q)2 → ∞, and naively one may expect the interference
term to survive since the individual final states have either positive (m even) or negative
(m odd) parity. However, the smoothing of the δ-function discontinuity means that the
interference term contributes only to the real part of the Compton amplitude, and does not
scale.

The physical picture which this discussion paints is that for (p+q)2 > 0 the perturbation
expansion diverges and the structure function is built up entirely from mesonic final states.
Nevertheless, the asymptotic behavior of the resonance sum replicates exactly that which
would result from the handbag diagram with scattering from free quarks. Furthermore,
as x → 1, the structure function ν2W ∼ (1 − x)2β−1, where the exponent β gives the
characteristic (1/Q2)β fall-off of the meson form factor, which satisfies the Drell-Yan–West
relation [204,205] (see Sec. VC1 below). Since the resonances not only contribute to but
saturate the scaling function, the model provides a graphic and quantitative illustration of
the duality between bound state resonances and the scaling function.

What conclusions can be extrapolated from the duality in 1+1 dimensions to the more
realistic case of QCD in 3+1 dimensions? A partial step in this direction was made recently
by Batiz and Gross [206], who generalized the ’t Hooft model by extending spinor degrees
of freedom to 3+1 dimensions. One of the complications of three spatial dimensions lies in
demonstrating that the transverse degrees of freedom, such as massless gluons, are damped
and that only massive hadrons arise [198]. Nevertheless in the large-Nc limit one expects
that qq̄ bound states will still be narrow, so that local duality must still be invoked. Beyond
the Nc → ∞ limit, however, resonances will acquire finite widths, and one can expect com-
plications with mixing of resonant and nonresonant background contributions. In addition,
confinement has of course not been proved in 3+1 dimensions, rendering the discussion sug-
gestive but not rigorous. Instead, in the literature one usually resorts to quark models to
learn how duality may arise in Nature. In the following we examine several model studies
which may shed light on how scaling can coexist with confinement in QCD.
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b. Nonrelativistic Models To obtain clues about how the disparate regimes of confine-
ment and asymptotic freedom could coexist in QCD, Greenberg [207] studied a nonrelativis-
tic model of two scalar quarks each with mass m bound by a harmonic oscillator potential,
V (r) ∼ mω2r2, where ω is the harmonic oscillator eigenfrequency.1 The choice of potential
was motivated partly by simplicity, and partly by the expectation that quarks interacting via
a harmonic oscillator would be more free at short distances than for a Coulombic potential,
leading to a more rapid approach to scaling. A similar model was subsequently discussed
by Gurvitz & Rinat [208], in which other potentials, such as an infinite square well, were
considered.

Solving a two-body Schrödinger equation yields solutions for the wave functions ψn(r)
for the n-th energy level of the bound state system in terms of Hermite polynomials. The
structure function for scattering from the n = 0 ground state can then be written [207]

W =
1

π2

∑

n

1

n!
|φn|2 δ

(
q0 − nω − ~q 2

2M

)
, (123)

where φn is defined in terms of the wave function ψn(r) as

φa
n =

√
n!

(−i)n

∫
dz ψ0(z) ψn(z) exp

(
−iqz

2

)

=

(
~q 2

2Mω

)n/2

exp

(
− ~q 2

4Mω

)
, (124)

where M = 2m is the sum of the quark masses, and ~q is chosen to be in the +z direction,
with q = |~q|. Introducing a nonrelativistic scaling variable,

xnr =
~q 2

2Mq0
, (125)

and using Stirling’s formula to approximate n! at large n, the structure function of the
system becomes

W ≈ 1

π2
exp(−2ηf(xnr))

∑

n

δ

(
η(1 − xnr)

xnr − n
ω

)
, (126)

where η = ~q 2/2Mω, and

f(xnr) = 1 − 1

2xnr
+

1 − xnr

xnr
ln
(
ma

mb

1 − xnr

xnr

)
. (127)

Each term in the sum in (126) comes from a different excitation of the ab bound state.
Note that the relevant variable here is ~q 2 rather than the four-momentum transfer squared,

1In fact, Greenberg considered the case of unequal quark masses, however, for clarity we shall

simplify the discussion to the equal mass case.
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Q2 = ~q 2 − q2
0. Replacing the sum over n in Eq. (126) with an integral over n (or averaging

over ~q 2 at fixed xnr) then gives [207]

W ≈ 1

π2ω
[exp(−2ηf(xnr))]

2 . (128)

The function f(xnr) is positive for 0 ≤ xnr ≤ 1, except for a quadratic zero at xnr = 1/2,
and at large ~q 2 is approximately equal to

f(xnr) ≈ 4
(
x− 1

2

)2

. (129)

The structure function therefore vanishes for large ~q (η), except at the value of xnr corre-
sponding to the fraction of the bound state momentum carried by the quark, as expected
in the parton model. This demonstrates that the deep inelastic limit of the structure func-
tion approaches the limit of incoherent elastic scattering off its constituents as though the
constituents were free, and illustrates how the scaling limit can coexist with confinement.

c. Relativistic Models The above nonrelativistic model example demonstrates how the
effects of final state interactions, which would spoil the interpretation of the structure func-
tion in terms of incoherent scattering from quark constituents, are suppressed at large mo-
menta, even in the case of confining inter-quark forces. For deep inelastic scattering in the
Bjorken limit, on the other hand, the energy transfer q0 in the target rest frame is much
greater than the mass of the hadron, q0 ≫ M , while the nonrelativistic approach holds only
if q0 ≪ M . It is pertinent, therefore, to ask whether the effects of final state interactions
are still suppressed even as one probes the region of relativistic momenta.

An attempt to address this question was made by Gurvitz [209] within a relativistic
Bethe-Salpeter framework. As with the above nonrelativistic model, the constituents and
the virtual photon were all taken to be scalars. The structure function W here can be
expressed in terms of the relativistic bound state wave function Φ, which represents the
solution of the Bethe-Salpeter equation in the ladder approximation,

W =
1

π
ℑm

∫ d4p

(2π)4

d4p′

(2π)4
Φ(P, p) 〈p|G(P + q)|p′〉 Φ(P, p′) , (130)

where P and p are the bound state and struck quark momenta, with corresponding masses
M and m, respectively, and G is the full Green’s function. Expanding the structure function
in powers of 1/q,

νW = F0 +
F1

Q2
+ · · · , (131)

the leading (scaling) term was found [209] to be

F0 =
1

(4π)2

ν

q

∫ ∞

|ỹ|
dp

p

Ep
|Φ(P, p)|2 , (132)

where Ep =
√
~p 2 +m2

s is the energy of the spectator system (antiquark for a mesonic qq̄

state or diquark for a three-quark bound state), with ms the spectator mass. The variable
ỹ is the minimal momentum of the struck quark,
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ỹ(x,Q2) =
M(1 − x)2 −m2

s/M√
(1 − x)2 + 4m2

sx
2/Q2 +

√
(1 − x)2 + 4M2x2(1 − x)2/Q2

, (133)

which in the nonrelativistic limit reduces to the West scaling variable y [210],

ỹ → y ≡ −q
2

+
mω

q
, (134)

for the case of zero binding, m + ms = M . After integrating over momenta, the structure
function F0 was found to depend only on the scaling variable x̃,

x̃ =
x+

√
1 + 4M2x2/Q2 −

√
(1 − x)2 + 4m2

sx
2/Q2

1 +
√

1 + 4M2x2/Q2
, (135)

which corresponds to the light-cone fraction of the bound state carried by off-shell struck
quark. In fact, the variables x̃ and ỹ are related by

x̃ = 1 −
√
m2

s + ỹ2 + ỹ

M
. (136)

As well as accounting for target mass effects as in the Nachtmann variable ξ, Eq. (45),
the variable x̃ includes in addition dynamical corrections to the x-scaling through the ms

dependent term in Eq. (135), which are not accounted for in ξ. The use of the modified
scaling variables explicitly removes kinematical 1/Q2 corrections, and allows a more effective
separation of the leading-twist and higher-twist effects.

Going beyond the scalar approximation, Pace, Salme & Lev [211] explicitly incorporated
spin degrees of freedom of the hadronic constituents in their study of the compatibility of
confinement with scaling in DIS. Using light-cone Hamiltonian dynamics, the authors con-
sider a system of two relativistic spin-1/2 particles with mass m interacting via a relativistic
harmonic oscillator potential, V (r) = (a4/m)r2, where a is a constant with dimensions of
mass. The light-cone, or front-form, dynamics allows one to determine the energy spectrum
and wave functions exactly from the correspondence between the relativistic wave equation
for the mass operator and the nonrelativistic Schrödinger equation. The energy of the n-th
excited state of this system is then given by

En = (M2
n − 4m2)/4m , (137)

where Mn is the mass of the n-th excited state,

Mn = 2
√
m2 + a2(2n+ 3) , (138)

and n = nx + ny + nz. In the weak binding limit, a≪ m, the structure function F1 (or F2)
is calculated by summing over the discrete states n,

F1(x,Q
2) =

m2x4

8π2(1 − x)Q2

∑

n

δ

(
x− Q2

Q2 + 8a2n

)(
f 2(n, x)

)
, (139)
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where f(n, x) depends explicitly on the wave functions, and x is the usual Bjorken scaling
variable. In the limit n→ ∞, f(n, x) reduces to [211]

f(n, x) →
√

8π a χ(x)

m x3/2
, (140)

where χ(x) is proportional to the ground state wave function,

χ(x) =

(
2
√
πm

a

)1/2

exp
[
−kz(x)/2a

2
]
, (141)

with kz(x) = m(x− 1/2)/
√
x(1 − x).

The correspondence between the structure function in terms of a discrete spectrum of δ-
functions and the continuous, smooth scaling function versus x is implemented by averaging,
or smearing, over the experimental resolution in bins of x and Q2. Averaging over an interval
of 〈x〉 ∈ [x, x+δx], such that δx≪ 〈x〉, Pace et al. [211] define the smeared structure function

F̄1(〈x〉, Q2) ≡ 1

δx

∫ x+δx

x
dx F1(x,Q

2) . (142)

At large Q2 there are many states n which populate the region Q2/(Q2 +8a2n) ∈ [x, x+ δx]
(see Eq. (139)), so that the integral in Eq. (142) becomes a smooth function of Q2. In the
limit Q2 → ∞ (n→ ∞) the structure function then becomes a scaling function of x,

F1(x) −→
χ(x)2

8πx(1 − x)
. (143)

Therefore the result for F1(x,Q
2) is indeed compatible with the parton model once an

average over bins of x is performed. The issue of averaging is a crucial one in relating
structure functions calculated in hadronic and partonic bases, and we shall return to this
in Sec. VB2 below. This example also demonstrates that the usual interpretation of the
Bjorken variable x as the momentum fraction of the struck quark is still valid in a relativistic
framework, in the presence of strong final state interactions.

d. Phenomenological Models The above models have focused on understanding the
qualitative features of the appearance of scaling from hadronic degrees of freedom, with
only remote connections to the empirical spectrum of resonances from which the scaling
function is built up. In a more phenomenological approach, as an early alternative to the
parton model, Domokos et al. [212–214] showed that one could accommodate structure
function scaling by summing over resonances parameterized by Q2-dependent form factors.

Assuming a harmonic oscillator-like spectrum of nucleon excitations, in which the mass of
the n-th excited state was given by M2

n = (n+1)Λ2, with n an integer and Λ some mass scale,
analytic expressions for the structure function were obtained by including contributions from
positive and negative parity states with spin 1/2, 3/2, · · · , n + 1/2, with n even and n odd
corresponding to isospin 1/2 and 3/2 excitations, respectively. The structure function F2

was then given by a sum of transition form factors weighted by kinematical factors [212].
Although both electric and magnetic form factors contribute to the resonance sum, at high
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Q2 the structure function becomes dominated by the magnetic coupling, in which case the
transition form factors can be parameterized by

Gn(Q2) =
µn

(1 +Q2r2/M2
n)2 , (144)

where µn here is the magnetic moment for the state n, and the parameter r2 ≈ 1.41. In
the Bjorken limit the summation over discrete states is replaced by an integration over the
variable z ≡M2

n/Q
2,

F2 ∼ (ω′ − 1)1/2(µ2
1/2 + µ2

3/2)
Γ0

π

∫ ∞

0
dz

z3/2(1 + r2/z)−4

z + 1 − ω′ + Γ2
0z

2
, (145)

where ω′ = ω + M2/Q2 is the scaling variable introduced by Bloom & Gilman [2,3], and a
Breit-Wigner form has been introduced to smear the narrow resonances,

δ(W 2 −M2
n) → 1

π

ΓnMn

(W 2 −M2
n)2 + Γ2

n M
2
n

, (146)

with Γn the total width for the n-th state. The parameter Γ0 ≈ 0.13 in Eq. (145) is obtained
from the slope of ΓnMn versus M2

n for the existing nucleon and ∆ resonances (see Ref. [12] of
[212]). The replacement of the summation over the discrete set of δ-functions by a continuous
integral amounts to an averaging over neighboring regions of W , which becomes a better
approximation at increasingly higher Q2.

From Eq. (145) one sees that the resonance summation indeed yields a scaling function
in the Bjorken limit. Furthermore, in the narrow resonance approximation, Γn → 0, this
simplifies even further, with the structure function depending only on the magnetic moments
and the scaling variable ω′,

F2 ∼ (µ2
1/2 + µ2

3/2)
(ω′ − 1)3

(ω′ − 1 + r2)4
. (147)

In particular, this form exhibits the correct ω′ → 1 behavior according to the Drell-Yan–
West relation [204,205], and the empirical dependence of structure functions in the x → 1
limit (see Sec. VC1 below). Similar arguments have also been used to derive scaling in spin-
dependent [213] and neutrino structure functions [214] from sums over resonant excitations.

2. Resonances and the Transition to Scaling

The above models (nonrelativistic, relativistic and phenomenological) provide graphic
illustrations of the compatibility of confinement and asymptotic scaling in DIS, however,
they do not address the question of the origin of Bloom-Gilman duality at finite Q2. The
behavior of structure functions in the region of transition from resonance dominance to
scaling, and the onset of Bloom-Gilman duality in the preasymptotic region, was examined
recently by several authors [102,197,215–217] in dynamical models. As we shall see, the
issue of averaging and smearing the δ-function spikes in the resonance sum is rather more
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important here than in the Bjorken limit, since it determines to a large extent the shape of the
resonance structure function, and the speed with which the scaling function is approached.

In this section we generalize the models introduced above to the case of finite Q2, and
examine specifically how the resonance structures, which dominate the structure function
at low Q2, dual the scaling function which characterizes scattering at asymptotic Q2. While
the models may give rise to scaling at high Q2, it is not a priori obvious that the resonance
structure functions need approach the scaling limit uniformly, and the origin of the empirical
oscillations about the scaling curve discussed in Sec. IV needs to be understood.

We begin the discussion with a recent phenomenological study of duality in which the
structure function at low Q2 is built up from the known resonances below W ≈ 2 GeV.
With increasing Q2, the phenomenological approach quickly becomes intractable, however,
and a quark-level description becomes more viable. We illustrate how low-Q2 duality arises
in simple quark models, firstly considering the simplified case of scattering from a single
quark bound to an infinitely massive core, and then to the more realistic case of several
quark charges. The latter case is important in clarifying the puzzle of how the square of
the sum of quark charges (coherent scattering) can yield the sum of the squares of quark
charges (incoherent scattering).

a. Resonance Parameterizations A phenomenological model of the structure functions
in the resonance region was constructed recently by Davidovsky & Struminsky [218], in the
spirit of the earlier work of Domokos et al. [212–214], but with additional physical constraints
for the threshold behavior as ~q → 0, and the asymptotic behavior as Q2 → ∞. In terms of
the helicity amplitudes GR

m(Q2) for a given resonance R [219],

GR
m(Q2) =

1

2M

〈
R(λR)

∣∣∣ ǫµ(m) · Jµ(0)
∣∣∣N(λ = 1/2)

〉
, (148)

where ǫµ(m) is the photon polarization vector for helicity m (m = 0,±), and λR = m − 1/2
is the helicity of the resonance R, the contributions to the spin-averaged F1 and F2 and
spin-dependent g1 and g2 structure functions of the nucleon can be written [218,219] as

FR
1 = M2

[
|GR

+|2 + |GR
−|2
]
δ(W 2 −M2

R) , (149)
(

1 +
ν2

Q2

)
FR

2 = Mν
[
|GR

+|2 + 2|GR
0 |2 + |GR

−|2
]
δ(W 2 −M2

R) , (150)

(
1 +

Q2

ν2

)
gR
1 = M2

[
|GR

+|2 − |GR
−|2 + (−1)JR−1/2ηR

√
2Q2

ν
GR∗

0 GR
+

]
δ(W 2 −M2

R) , (151)

(
1 +

Q2

ν2

)
gR
2 = −M2

[
|GR

+|2 − |GR
−|2 − (−1)JR−1/2ηR

ν
√

2√
Q2

GR∗
0 GR

+

]
δ(W 2 −M2

R) , (152)

with JR and ηR the total spin and parity of the resonance R, respectively. Apart from the
nucleon elastic, and to some extent the N → ∆ transition, the detailed Q2 dependence of
the form factors GR

m(Q2) is not known. On the other hand, there are firm predictions from
perturbative QCD for the asymptotic Q2 → ∞ behavior of the form factors, which can be
used to constrain the phenomenological parameterizations. Using in addition the known
constraints from the |~q | → 0 behavior of the form factors at threshold, and the value at the
photon point, Q2 = 0, the form factors were parameterized in Refs. [218,220] as
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∣∣∣GR
±(Q2)

∣∣∣
2

=
∣∣∣GR

±(0)
∣∣∣
2
(
|~q|
|~q|0

Λ
′2

Q2 + Λ′2

)γ1
(

Λ2

Q2 + Λ2

)m±

, (153)

∣∣∣GR
0 (Q2)

∣∣∣
2

= C2

(
Q2

Q2 + Λ′′2

)2a
q2
0

|~q|2
(
|~q|
|~q|0

Λ
′2

Q2 + Λ′2

)γ2
(

Λ2

Q2 + Λ2

)m0

, (154)

where γ1 = 2JR − 3 and γ2 = 2JR − 1 for normal parity γ∗N → R transitions (JP =
1/2+ → 3/2−, 5/2+, 7/2−, · · ·), and γ1 = 2JR−1 and γ2 = 2JR +1 for anomalous transitions
(1/2+ → 1/2−, 3/2+, 5/2−, · · ·), with

|~q| =

√
(M2

R −M2 −Q2)2 + 4M2
RQ

2

2MR
, |~q|0 ≡ |~q|(Q2 = 0) =

M2
R −M2

2MR
. (155)

The exponents in Eqs. (153) and (154) are given by m+ = 3, m0 = 4 and m− = 5, and the
parameters Λ2, Λ

′2, Λ
′′2, a and C are determined empirically. Focusing on the F2 structure

function, one can easily verify that in the limit x → 1 the resulting structure function
behaves as F2(x) ∼ (1 − x)m+ , as required by pQCD counting rules (see Sec. VC1 below).
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FIG. 56. Resonance contributions to the proton F p
2 structure function versus the Nachtmann

scaling variable ξ in the model of Ref. [218]. The solid line is a parameterization of DIS data [7].

Summing over a total of 21 resonance states in the isospin-1/2 and isospin-3/2 channels
with masses MR

<∼ 2 GeV, the total F2 structure function is shown in Fig. 56 as a function
of the Nachtmann scaling variable ξ. The δ-functions in Eqs. (149)–(152) are smeared by
a Breit-Wigner shape as in Eq. (146). The ∆ resonance clearly provides the largest con-
tribution. The nonresonant background contribution here is relatively small, so that as Q2
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increases the ∆ peak moves to larger ξ, following the general trend of the scaling curve.
On the other hand, the higher-mass resonances lie somewhat below (factor 2) the scaling
curve at the Q2 values shown, which reflects the absence of the nonresonant backgrounds
which are relatively more important for the higher-mass resonances. At lower ξ (higher W ),
a quantitative description of the data would require the inclusion of additional resonances
beyond MR ∼ 2 GeV. This quickly becomes intractable, however, as little phenomenolog-
ical information exists on N → R transitions at high W , and indicates that a quark-level
description may be more feasible at these kinematics.

b. Harmonic Oscillator Model Despite the challenges in describing the transition to
scaling in terms of phenomenological form factors, it is nevertheless vital to understand how
the dynamics of resonances gives way to scaling. Recently Isgur et al. [197] addressed this
problem in the context of a simple quark model, in which both the appearance of duality
at low Q2 and the onset of scaling at high Q2 was studied. To simplify the problem Isgur
et al. consider a spinless, charged quark of mass m confined to an infinitely massive core
via a harmonic oscillator potential (see also Ref. [221]). For the case of scalar photons, the
inclusive structure function is given by a sum of squares of transition form factors (as in the
models discussed above) weighted by appropriate kinematic factors [197],

W(ν, ~q) =
Nmax∑

N=0

1

4E0EN

|F0,N(~q)|2δ(EN −E0 − ν) . (156)

The form factors F0,N represent transitions from the ground state to states characterized by
the principal quantum number N(≡ l+ 2k, where k is the radial and l the orbital quantum
numbers), and the sum over states N goes up to the maximum Nmax allowed at a given
energy transfer ν. A related discussion which focuses on the response in the time-like region
was given by Paris & Pandharipande [216].

The spectrum corresponding to this system can be determined by noting the similarity
between the relativistic Klein-Gordon equation and the Schrödinger equation for a nonrela-
tivistic harmonic oscillator with a potential V 2(r) = α r2, with α a generalized, relativistic
string constant, which yields the same solutions for the wave functions. The energy eigen-

values in this case are given by E = ±EN , where EN =
√

2β2(N + 3/2) +m2 and β = α1/4,
and the excitation form factors are derived using the recurrence relations of the Hermite
polynomials [197],

F0,N(~q 2) =
1√
N !

iN
(

|~q|√
2β

)N

exp(−~q 2/4 β2) . (157)

This form factor is in fact the sum of all form factors for excitations from the ground state
to degenerate states with the same principal quantum number N . A necessary condition
for duality is that these form factors can represent the pointlike free quark. One can verify
that

∑Nmax

N=0 |F0,N(~q )|2 → 1 as Nmax → ∞, which follows from the completeness of the
wave functions. For any individual contribution, F0,N(~q) reaches its maximum value when
~q 2 = 2β2N , at which point F 2

0,N = F 2
0,N+1. This coincidence is true in fact for all juxtaposed

partial waves at their peaks. Furthermore, using νN = EN−E0 and EN =
√

2β2N + E2
0 , one
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finds that νN = (~q 2
N − ν2

N )/2E0, so that the position of the peak in the averaged structure
function occurs at Q2/2mν = m/E0, which is the fraction of the bound system’s light-cone
momentum.

The scaling function corresponding to the structure function in Eq. (156) is given by

S(u,Q2) ≡ |~q| W =
√
ν2 +Q2 W , (158)

with dimensions [mass]−2. The scaling variable u is defined as

u =
1

2m

(√
ν2 +Q2 − ν

)(
1 +

√

1 +
4m2

Q2

)
, (159)

and takes into account both target mass and quark mass effects [15] (cf. the variable x̃ in
Eq. (135)). Note that the variable u in Eq. (159) is scaled by the quark mass, m, rather
than the bound state mass, so that the range of u is between 0 and ∞.

FIG. 57. Onset of scaling for the structure function S(u,Q2) as a function of u for Q2 = 0.5

(solid), Q2 = 1 (short-dashed), 2 (long-dashed) and 5 GeV2 (dotted). The widths for N ≥ 1

has been arbitrarily set at ΓN = 100 MeV with the elastic width set to ΓN=0 = 30 MeV. (From

Ref. [197].)

The structure function S(u,Q2) is shown in Fig. 57 for several finite values of Q2, where
for illustration the δ-functions have been smoothed by a Breit-Wigner shape with an arbi-
trary but small width, ΓN (cf. Eq. (146)),

δ(EN − E0 − ν) → ΓN

2π

fN

(EN −E0 − ν)2 + (ΓN/2)2
, (160)

where the factor fN = π/[π/2 + arctan 2(EN − E0)/ΓN ] ensures that the integral over the
δ-function is identical to that over the Breit-Wigner shape. The resonance structure is
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quite evident in each of the low-Q2 curves, with the amplitude of oscillation decreasing
with increasing Q2. As Q2 increases, each of the resonances moves out towards higher u,
as dictated by kinematics. The right-most peak in each of the curves corresponds to the
elastic contribution. At Q2 = 0, this is in fact the only allowed state, and is equal to almost
half of the asymptotic value of the integral over u. It remains rather prominent for Q2 =
0.5 GeV2, though most of the function is by this point built up of excited states, and it
becomes negligible for Q2 ≥ 2 GeV2.

For local duality to hold, the resonance “spikes” would be expected to oscillate around
the scaling curve and to average to it, once Q2 is large enough. Remarkably, even the curves
at lower Q2 tend to oscillate around the scaling curve. Note that these curves are at fixed
Q2, but sweep over all ν. As ν is increased, more and more highly excited states are created,
making the density of states larger at smaller u. In the continuum limit, where N → ∞
and the density of states becomes very large, the resonance spikes die out and the structure
function approaches its asymptotic value. Using Stirling’s formula, one can indeed show
that the scaling function takes the analytic form [197]

S(u) =
E0√
πβ

exp

(
−(E0 −mu)2

β2

)
. (161)

The difference between the scaling function and the curve in Fig. 57 at 5 GeV2 (dotted) is
almost negligible. The asymptotic scaling function therefore straddles the oscillating reso-
nance structure function in an apparently systematic manner. This is quite extraordinary
given the very simple nature of the model, and points to the rather general nature of the
phenomenon of duality.

c. Sum of Squares vs. Square or Sums Simple models such as the one discussed above
are clearly valuable in providing physical insight into the dynamical origins of duality. How-
ever, one may wonder whether some of the qualitative features of duality and the onset
of scaling here could be a consequence of the restriction to scattering from a single quark
charge. In general, if one neglects differences between the quark flavors, the magnitude of the
structure function F2 is proportional to the sum of the squares of the (quark and antiquark)
constituent charges,

∑
q e

2
q . On the other hand, the summation over resonance form factors

is implicitly driven by the coherently summed square of constituent charges, (
∑

q eq)
2, for

each resonance. The basic question arises then: How does the square of the sum become the
sum of the squares?

While the various examples above and in Sec. VB1 have illustrated how the coherent
and incoherent descriptions can be merged at high energies, the question of the cancellation
of the interference terms

∑
q 6=q′ eqeq′ has been either side-stepped or neglected altogether

in these discussions. For instance, in the ’t Hooft model the interference term was found
not to scale following the smoothing of the δ-function discontinuity [198]. Moreover, by
restricting oneself to a single quark charge, as in the model of Isgur et al. [197], the problem
of interference terms does not arise at all. The physics of the cancellation of the interference
terms, which are related to the higher-twist matrix elements responsible for violations of
duality, is therefore not clear.

Close and Isgur [102] elucidated this problem by drawing attention to the necessary
conditions for duality to occur for the general case of more than one quark charge. They
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considered a composite state made of two equal mass scalar quarks with charges e1 and e2, at
positions ~r1 and ~r2, respectively, interacting via a harmonic oscillator potential. The ground
state wave function for this system is denoted by ψ0(~r), where ~r1,2 ≡ ~R ± ~r/2 is defined in

terms of the center of mass (~R) and relative (~r) spatial coordinates. The amplitude for the
system to absorb a photon of momentum ~q is proportional to

e1e
i~q·~r/2 + e2e

−i~q·~r/2 , (162)

which can be rewritten as a sum and difference of the amplitudes as

(e1 + e2)
(
ei~q·~r/2 + e−i~q·~r/2

)
+ (e1 − e2)

(
ei~q·~r/2 − e−i~q·~r/2

)
. (163)

Using the partial wave expansion exp(iqz/2) =
∑

l i
lPl(cos θ) jl(qr/2)(2l+ 1) to project out

even and odd partial waves, the form factor is generally given by

F0,N(l)(~q) ∼
∫
dr r2 ψ∗

l (r) ψ0(r) jl(qr/2)

× [(e1 + e2)δl even + (e1 − e2)δl odd] , (164)

where N ≡ 2k + l with k the radial quantum number, and the wave function ψl(~r) de-
scribes the excitation of a resonant state with angular momentum l. The resulting structure
function, summed over resonance excitations, will receive even- and odd-l contributions pro-
portional to (e1±e2)2, respectively. For the harmonic oscillator potential the even and odd-l
components also correspond to even and odd N , i.e., N = 2n and N = 2n+ 1, respectively,
with n an integer. Their contributions to the structure function can be written [102,215]

F(ν, ~q) =
∑

N(n)

1

4E0EN

{
(e21 + e22)(F

2
0,2n(~q) + F 2

0,2n+1(~q))

+ 2 e1e2 (F 2
0,2n(~q) − F 2

0,2n+1(~q))
}
δ(EN −E0 − ν) . (165)

This representation reveals the physics rather clearly. The excitation amplitudes to res-
onance states contain both diagonal (e21 + e22) and nondiagonal (±2e1e2) terms, which are
leading- and higher-twist, respectively. The former add constructively for any l, and the sum
over the complete set of states yields the scaling structure function (“sum of squares”). The
latter, on the other hand, enter with opposite phases for even and odd l, and hence interfere
destructively. This exposes the critical point that at least one complete set of even and odd
parity resonances must be summed over for duality to hold [102]. An explicit demonstration
of how this cancellation takes place in the SU(6) quark model and its extensions is discussed
in Sec. VC2 below.

Turning now to the more physical case of a vector photon (but still scalar quark — see
also Ref. [222,223]), the dominant structure function at large Q2 is the longitudinal response
function,

RL(~q, ν) =
Nmax∑

N=0

1

4E0EN

|f0,N(~q)|2(E0 + EN)2δ(ν + E0 −EN ) , (166)

where
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|f0,N(~q)|2 ≡ (e21 + e22)
(
F 2

0,2n(~q) + F 2
0,2n+1(~q)

)
+ 2e1e2

(
F 2

0,2n(~q) − F 2
0,2n+1(~q)

)
. (167)

Once again the sum over N denotes the equivalent sum over n for N = 2n and N = 2n+ 1.
In the limit of N (or n) → ∞, the parity-even and odd partial waves sum to the same
strengths,

∑∞
n=0 F

2
0,2n(~q) =

∑∞
n=0 F

2
0,2n+1(~q), and the interference term proportional to e1e2

vanishes.
The cancellation of the cross terms is explicitly realized for the case of a harmonic

oscillator potential, where the use of Stirling’s formula in the continuum limit gives rise to
the scaling longitudinal response function [215]

RL(~q, ν) = (e21 + e22)
(ν + 2E0)

2

4βE0

√
πν

× exp

{
ν2 + 2E0ν

2β2
ln

(
Q2 + ν2

ν2 + 2E0ν

)
− Q2 + 2E0ν

2β2

}
. (168)

The interference terms thus cancel exactly, leaving behind the purely incoherent contribution
proportional to the squares of the quark charges.

Similar results have also been obtained recently by Harrington [217], who performed
a detailed study of the relationship between coherent and incoherent descriptions of the
structure function within this model and the cancellation of the higher-twist interference
terms. Summing over the orbital angular momentum for each N , the contributions to
the structure function from a transition to the state N were shown to be proportional to
e21 + e22 + 2e1e2(−1)N , which illustrates how the contributions from alternate energy levels
tend to cancel for the e1e2 interference term.

For the case e1 = e2 = e, for which the charge factor in Eq. (168) alternates between
4e2 and 0, the contributions from the two particles cancel or add coherently for odd- and
even-parity states, respectively [102,217]. The resulting (scaled) structure function q̃F(y)
is plotted in Fig. 58 for several values of the dimensionless momentum q̃ = q/

√
2mω. The

scaling variable y is the dimensionless analog of the West scaling variable in Eq. (134), which
is related to the component of a parton’s momentum in the ~q direction before the collision
[205]. The resonance peaks, which have been broadened by a Breit-Wigner form (146), show
clear oscillations about the scaling function, as in the earlier example in Fig. 57. As q → ∞,
the oscillations in the curves are damped out, and the curves approach the asymptotic scaling
limit, in which the structure function is given by a Gaussian, q̃F(y) → (2/

√
π) exp(−y2).

The approach to scaling can be further illuminated by considering the lowest moment of
the structure function. Returning to the longitudinal response function RL(~q, ν) in Eq. (168),
integration over the energy transfer ν yields the sum rule [215]

S(~q) ≡
∫ +∞

−∞
dν RL(~q, ν) (169)

= e21 + e22 + 2e1e2 F0,0(2~q) . (170)

The correction to the scaling result is thus directly proportional to the elastic form factor,
Eq. (157), which clearly illustrates how the interference term vanishes with increasing q.

What are the implications of these results for phenomenology? Close & Zhao speculate
that analogous results also hold for the F2 structure function, namely, for Q2 → ∞ one has
at fixed x [215]:
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FIG. 58. Structure function q̃F as a function of the scaling variable y for dimensionless mo-

mentum transfers q̃ = 4 (large peaks), 8 (small peaks), and 32 (smooth curve). The sharp energy

levels have been given a width which increases from 0.2 to 2 as their energy increases. The dashed

curve is the Gaussian limit of the scaled free particle. From Ref. [217].

F2(x) → (e21 + e22)
x2M2

β
√
πE0

exp

(
−M

2

β2

(
E0

M
− x

)2
)
. (171)

The corresponding number sum rule, in analogy with Eq. (170), then becomes

∫ +∞

−∞
dx

F2(x)

x
= e21 + e22 , (172)

which is reminiscent of the Gottfried sum rule in the parton model [224]. Furthermore, the
momentum sum rule can be written as [215]

∫ +∞

−∞
dx F2(x) = (e21 + e22)

(
E0

M
+

β2

2ME0

)
. (173)

Since the ground state energy for the harmonic oscillator potential is E0 =
√

3β2 +m2, one
can identify the potential strength β with the Fermi momentum of the constituent, 3β2 ∼ ~p 2,
and the second term in Eq. (173) can be understood as a kinetic energy correction to the
parton model result. The physics of the parton model is recovered in the weak binding
limit, β → 0, in which the constituents behave as if they were free. The structure function
in this case reduces to a δ-function at x = 1/2 (for equal mass quarks), and the momentum
(energy) carried by the constituents is then given by

∫ +∞

−∞
dx F2(x) = (e21 + e22)

E0

M
, (174)
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exactly as expected in the naive parton model.
In summary, we have observed the onset of scaling and the appearance of duality in a

variety of quark models in which the structure function is explicitly obtained from sums
of form factors for transitions to excited states. The harmonic oscillator potential is the
prototypical example, allowing the computation of the excited state spectrum to be made
exact. However, other inter-quark potentials also produce similar behavior, which suggests
that the phenomenon of quark-hadron duality may indeed be a fundamental property of con-
fined systems. An important finding of these studies is the identification of the pattern of
constructive and destructive interference between resonances by which the sum of coherent
effects can be transformed into an incoherent process, as in the parton model. The gener-
ality of these results for arbitrary potentials, including ones which have strong short-range
repulsion [221], remains an important question for future study.

C. Local Duality: Phenomenological Applications

In Section VA we showed how global duality, or moments of structure functions, can
be understood within the operator product expansion of QCD, in terms of suppression of
higher-twist contributions. The interpretation of local duality, on the other hand, is more
elusive in QCD. In Section VB various dynamical models were examined in order to gain
some insight into the microscopic origin of local duality. To maintain clarity, and illustrate
the main qualitative features of duality, most of these models were at best gross oversim-
plifications of Nature (for instance, assuming scalar quarks), with only remote contact with
experiment. The richness of the empirical data which demonstrate duality both in unpo-
larized and polarized scattering obviously calls for more realistic theoretical descriptions, if
contact with experiment is to be achieved.

In this section we wish to explore local duality from the perspective of its phenomenolog-
ical applications, focusing in particular on the relations between structure functions in the
resonance region (low W and large x) and transition form factors. We start by considering
the simplest, and at the same time most extreme, application of local duality, for the case
of elastic scattering. Following this we discuss predictions for structure functions based on
low-lying resonances in the nonrelativistic quark model and its extensions.

1. Local Elastic Duality

With accurate enough data, one can study the degree to which local duality occurs for
specific resonance regions, or even individual resonances. Of course, to extract information
on a given resonance from inclusive data requires understanding of nonresonant background
contributions to the structure function, as well as contributions from the tails of neighboring
resonances. Inherently, the extraction of resonance properties is a model-dependent proce-
dure, and in practice one uses models, such as Breit-Wigner shapes for resonances, to isolate
the resonance and background contributions. The one exception that does not suffer from
this ambiguity is the nucleon elastic component: below the pion production threshold the
only contribution to the cross section is from elastic scattering.
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a. Drell-Yan–West Relation and Quark Counting Rules Exploration of the exclusive–
inclusive (or form factor–structure function) interface [225–229] is as old as the first DIS
experiments themselves. A quantitative connection between structure functions at threshold
and elastic form factors was first made by Drell & Yan [204] and West [205], who related
the high-Q2 behavior of the elastic Dirac form factor F1(Q

2),

F1(Q
2) ∼

(
1

Q2

)n

, Q2 → ∞ , (175)

with the threshold (x→ 1) behavior of the structure function νW2(x),

νW2(x) ∼ (1 − x)2n−1 , x→ 1 . (176)

The power-law behavior of the form factor is simply related to the suppression of the struc-
ture functions in the limit where one quark carries all of the hadron’s momentum.

Drell & Yan based their derivation on earlier work on a canonical pion-nucleon field theory
in which the partons of the physical nucleon were taken to be point-like (bare) nucleons and
pions [230]. The basic assumption was that in the infinite momentum frame there exists a
region in which Q2 can be made larger than the transverse components of the constituents.
Without specifying the nature of the partons, on the other hand, West [205] used a field-
theoretic description of a nucleon in terms of a scalar quark and a residual system of a
definite mass, and derived Eqs. (175) and (176) by requiring that the asymptotic behavior
of the nucleon–quark vertex function is damped sufficiently at large internal momenta.

Although derived before the advent of QCD, the Drell-Yan–West relation, as Eqs. (175)
and (176) have come to be known, can be expressed in perturbative QCD language in terms
of hard gluon exchange. The pertinent observation is that deep inelastic scattering at x ∼ 1
probes a highly asymmetric configuration in the nucleon in which one of the quarks goes far
off-shell after the exchange of at least two hard gluons in the initial state; elastic scattering,
on the other hand, requires at least two gluons in the final state to redistribute the large Q2

absorbed by the recoiling quark [231]. The exponent n can therefore be interpreted as the
minimum number of hard gluons that need to be exchanged between quarks in the nucleon
[225,232], which gives rise to the so-called “pQCD counting rules”. A clear prediction of the
counting rules is that the x→ 1 limit is dominated by scattering from quarks with the same
helicity as the nucleon [55] (also known as “hadron helicity conservation”). In general, the
quark distributions in a hadron h are predicted to behave as

qh(x) ∼ (1 − x)2n−1+2∆λ , x→ 1 , (177)

where ∆λ = |λh−λq| is the difference between the helicities of the hadron and the interacting
quark (see also Ref. [54]). Scattering from quarks with helicity antialigned with respect to
that of the nucleon is therefore suppressed by a relative factor (1−x)2 [55]. For the case of a
pion, since λπ = 0, the leading behavior of the quark distribution is expected to be (1− x)2

[55].
The relation between the power-law behavior of the form factor at largeQ2 and the x→ 1

suppression of the structure function in Eqs. (175) and (176) also arises at the hadronic
level from local duality, by considering the interplay between resonances and scaling. In the
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narrow resonance approximation, if the contribution of a resonance of mass MR to the F2

structure function at large Q2 is given by

FR
2 = 2Mν

(
GR(Q2)

)2
δ(W 2 − M2

R) , (178)

then a form factor behavior

GR(Q2) ∼
(

1

Q2

)n

(179)

translates, for Q2 ≫M2
R, into a scaling function

FR
2 ∼ (1 − xR)2n−1 , (180)

where xR = Q2/(M2
R−M2 +Q2). The asymptotic behavior of the form factor and structure

function is therefore the same as that predicted at the partonic level in the Drell-Yan–West
relation, Eqs. (175) and (176).

b. Threshold Duality Relations The elastic contributions to the inclusive structure func-
tions can be expressed in terms of the elastic electric and magnetic form factors, GE and
GM , by noting that for elastic scattering the helicity amplitudes in Eqs. (149)–(152) reduce
to [219]

G+ →
√

Q2

2M2
GM , (181)

G0 → GE , (182)

G− → 0 . (183)

The elastic spin-averaged structure functions can then be written as

F el
1 = Mτ G2

M δ

(
ν − Q2

2M

)
, (184)

F el
2 =

2Mτ

1 + τ

(
G2

E + τG2
M

)
δ

(
ν − Q2

2M

)
, (185)

where τ = Q2/4M2. For spin-dependent structure functions one has [177,219]

gel
1 =

Mτ

1 + τ
GM (GE + τGM) δ

(
ν − Q2

2M

)
, (186)

gel
2 =

Mτ 2

1 + τ
GM (GE −GM) δ

(
ν − Q2

2M

)
. (187)

In their original paper, Bloom & Gilman [2] suggested that if one carries the idea of
local duality to an extreme, and makes the assumption that the area under the elastic peak
in the measured structure function at large Q2 is the same as the area under the scaling-
limit curve, then one could relate the integral of the scaling function below threshold to the
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elastic form factors. For the νW2(= F2) structure function in Eq. (185), integrating over the
Bloom-Gilman scaling variable ω′ = (2Mν +M2)/Q2, they find [2]

∫ 1+W 2
t /Q2

1
dω′ νW2(ω

′) =
2M

Q2

∫
dν νW el

2 (ν,Q2) (188)

=
G2

E(Q2) + τG2
M (Q2)

1 + τ
. (189)

To give meaning to the integration over the δ-function, the integral in Eq. (189) runs from
the unphysical value ω′ = 1 up to an ω′ corresponding to a hadron mass W = Wt near the
physical pion threshold.

In QCD language, De Rújula et al. [6] showed that one could express the threshold rela-
tion (185) as an integral over the Nachtmann scaling variable ξ between the pion threshold
ξth and ξ = 1, which also includes the unphysical region between the elastic nucleon pole at

ξ0 ≡ ξ(x = 1) = 2/(1 +
√

1 + 1/τ) and ξ = 1. Integrating the elastic structure functions
over ξ between the pion threshold ξth and ξ = 1, one finds for the unpolarized and polarized
[233] structure functions [234]:

∫ 1

ξth

dξ ξn−2 F1(ξ, Q
2) =

ξn
0

4 − 2ξ0
G2

M(Q2) , (190)

∫ 1

ξth

dξ ξn−2 F2(ξ, Q
2) =

ξn
0

2 − ξ0

G2
E(Q2) + τG2

M (Q2)

1 + τ
, (191)

∫ 1

ξth
dξ ξn−2 g1(ξ, Q

2) =
ξn
0

4 − 2ξ0

GM(Q2) (GE(Q2) + τGM (Q2))

1 + τ
, (192)

∫ 1

ξth
dξ ξn−2 g2(ξ, Q

2) =
ξn
0

4 − 2ξ0

τGM(Q2) (GE(Q2) −GM(Q2))

1 + τ
. (193)

where ξth = ξ(xth = Q2/(W 2
th−M2+Q2)), with Wth = M+mπ. The local duality hypothesis

is that the structure functions F1,2 and g1,2 under the integrals are independent of Q2, and
are functions of ξ only. From Eq. (191) De Rújula et al. [6] extracted the proton’s Gp

M form
factor, assuming that the ratio Gp

E/G
p
M is sufficiently constrained, from resonance data on

the F p
2 structure function at large ξ.

More recently Ent et al. [235] used high-precision Jefferson Lab data to make a quantita-
tive test of the threshold relations using a slightly modified extraction procedure. Namely,
the integral obtained from the resonance data, which stop at the pion threshold ξth rather
than at ξ = 1, is subtracted from the scaling integrals, and Gp

M then extracted from the
remaining integrated strength. Figure 59 shows the resulting proton magnetic form factor
Gp

M extracted using the NMC (open circles) and Jefferson Lab (filled circles) scaling curves
for F p

2 . In both cases the extracted form factor is found to be in remarkable agreement
with the parameterization of the world data on Gp

M [236]. For the case of the Jefferson Lab
scaling curve, the Gp

M fit is reproduced quite well, to within <∼ 30% accuracy, for Q2 from
0.2 GeV2 up to ∼ 4 GeV2.

Ent et al. [235] showed that one can also extract the Gp
E/G

p
M ratio from values of R,

making use of Eqs. (190) and (191). However, more precise data on R at large ξ are needed
[174] for one to be able to make quantitative predictions.
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FIG. 59. Proton magnetic form factor Gp
M extracted from the inelastic scaling curves (from

NMC and JLab) using local duality, and compared with the Gari-Krumpelmann parameterization

[236] of the world’s Gp
M data. (From Ref. [235].)

c. Structure Functions in the x → 1 Limit Applying the duality argument in reverse,
one can formally differentiate the local elastic duality relations with respect to Q2 to express
the scaling functions in terms of Q2 derivatives of elastic form factors [2]. For the νW2

structure function, for example, Bloom & Gilman find [2,3]

νW2(ω
′ = 1 +W 2

t /Q
2) =

Q2

1 − ω′

d

dQ2

(
G2

E + τG2
M

1 + τ

)
. (194)

Relations for the other structure functions can also be derived [237,238,240] in terms of
the elastic form factors and their derivatives. In particular, differentiating both sides of
Eqs. (190)–(193) with respect to ξ (or Q2) and changing variables from ξ to x, one finds

F1(x = xth) = β
dG2

M

dQ2
, (195)

F2(x = xth) = β

{
G2

M −G2
E

2M2(1 + τ)2
+

2

1 + τ

(
dG2

E

dQ2
+ τ

dG2
M

dQ2

)}
, (196)

g1(x = xth) = β

{
GM (GM −GE)

4M2(1 + τ)2
+

1

1 + τ

(
d(GEGM)

dQ2
+ τ

dG2
M

dQ2

)}
, (197)

g2(x = xth) = β

{
GM (GE −GM)

4M2(1 + τ)2
+

τ

1 + τ

(
d(GEGM)

dQ2
− dG2

M

dQ2

)}
, (198)
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where the kinematic factor β = (Q4/M2)(ξ2
0/xξ

3)(2x− ξ)/(2ξ0−4). Note that the structure
functions in Eqs. (194)–(198) are evaluated at the pion production threshold, x = xth,
coming from the lower limits of integration in Eqs. (190)–(193). (See also Refs. [239,240] for
a generalization to the case of neutrino scattering.) Asymptotically, each of the structure
functions F1, F2 and g1 is found to be determined by the slope of the square of the magnetic
form factor [237],

F1 , F2 , g1 ∼ dG2
M

dQ2
, Q2 → ∞ , (199)

while g2, which is associated with higher twists, is determined by a combination of GE and
GM ,

g2 ∼
d(GEGM −G2

M)

dQ2
, Q2 → ∞ . (200)

In this limit each of the structure functions can also be shown to satisfy the Drell-Yan–West
relation, Eqs. (175) and (176). In addition, the asymptotic behavior of g1 and F1 is predicted
to be the same, so that the polarization asymmetries A1 ≈ g1/F1 → 1 as x→ 1 for both the
proton and neutron. This is in marked contrast to the expectations from SU(6) symmetry,
in which the proton and neutron asymmetries are predicted to be Ap

1 = 5/9 and An
1 = 0,

respectively [9]. Recall that the symmetric SU(6) wave function for a proton polarized in
the +z direction is given by

|p↑〉 =
1√
2
|u↑(ud)0〉 +

1√
18

|u↑(ud)1〉 − 1

3
|u↓(ud)1〉

− 1

3
|d↑(uu)1〉 −

√
2

3
|d↓(uu)1〉 , (201)

where the subscript 0 or 1 denotes the total spin of the two-quark component (and similarly
for the neutron, with u ↔ d). Here the quark distributions for different flavors and spins
are related by the Clebsch-Gordan coefficients in Eq. (201), with u = 2d and ∆u = −4∆d,
which leads to the familiar SU(6) quark-parton model results,

Rnp ≡ F n
2

F p
2

=
2

3
, Ap

1 =
5

9
, An

1 = 0 [SU(6)] . (202)

Using parameterizations of global form factor data, the ratios of the neutron to proton F1, F2

and g1 structure functions are shown in Fig. 60 as a function of x, with x corresponding to xth.
Some theoretical limits for the ratios as x→ 1 are indicated on the vertical axis, which range
from 2/3 in the SU(6) quark model, to 3/7 in the pQCD-inspired helicity conservation model
[55], and 1/4 in the case where the symmetric part of the SU(6) wave function is suppressed
[91,241] (see the discussion in Sec. VC2 below). While the F2 ratio varies somewhat with x
at lower x, beyond x ∼ 0.85 it remains almost x independent, approaching the asymptotic
value (dGn2

M/dQ
2)/(dGp2

M/dQ
2). Because the F n

1 /F
p
1 ratio depends only on GM , it remains

flat over nearly the entire range of x. The g1 structure function ratio approaches the same
asymptotic limit as F1, albeit more slowly, which may indicate a larger role played by higher
twists in spin-dependent structure functions than in spin-averaged (see Sec. VA1 above).
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Interestingly, the helicity conservation model prediction [55] of 3/7 is very close to the
empirical ratio of the squares of the neutron and proton magnetic form factors, µ2

n/µ
2
p ≈ 4/9.

Indeed, if one approximates the Q2 dependence of the proton and neutron form factors by
dipoles, and takes Gn

E ≈ 0, then the structure function ratios are all determined by the
magnetic moments, F n

2 /F
p
2 ≈ F n

1 /F
p
1 ≈ gn

1 /g
p
1 → µ2

n/µ
2
p as Q2 → ∞. On the other hand, for

the g2 structure function, which depends on both GE and GM at large Q2, the asymptotic
behavior is gn

2 /g
p
2 → µ2

n/(µp(µp − 1)) ≈ 0.73.
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FIG. 60. Neutron to proton ratio for F1 (dashed), F2 (solid) and g1 (dot-dashed) structure func-

tions at large x, from Ref. [237]. Several leading-twist model predictions for F2 in the x→ 1 limit

are indicated by the arrows: 2/3 from SU(6), 3/7 from SU(6) breaking via helicity conservation,

and 1/4 from SU(6) breaking through d quark suppression.

Of course the reliability of the duality predictions is only as good as the quality of the
empirical data on the electromagnetic form factors allow. While the duality relations are
expected to be progressively more accurate with increasing Q2 [6], the difficulty in measuring
form factors at large Q2 also increases. Obviously more data at larger Q2 would allow more
accurate predictions for the x → 1 structure functions, and new experiments at Jefferson
Lab and elsewhere will provide valuable constraints. However, the most challenging aspect
of testing the validity of the local duality hypothesis is measuring the inclusive structure
functions at high enough x, which will become feasible with the 12 GeV energy upgrade
at Jefferson Lab [242] (see also Sec. VII). In particular, with data on both the F1 and F2

(or g1 and F2) structure functions at large x one will be able to extract the GE and GM

form factors separately, without having to assume the GE/GM ratio in current extractions
[6,174,235] of GM from the available F2 data.

Finally, the threshold duality relations (190)–(194) have also been applied recently [243]
in studies of the nuclear medium dependence of nucleon structure functions at large x.
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Recent evidence from polarized (~e, e′~p) scattering experiments on 4He [89,90] nuclei suggests
that a small change in the structure of the bound nucleon, in addition to the standard
nuclear corrections such as meson exchange currents, isobar contributions, and final state
interactions, is the most efficient way to describe the ratio of transverse to longitudinal
polarization of the ejected protons [244–246]. Using local duality to relate the medium
dependence of nucleon electromagnetic form factors to the medium dependence of nucleon
structure functions, the recent data for a proton bound in 4He [89,90] have been used to
place strong constraints on models of the nuclear EMC effect in which medium modification
is attributed to a deformation of the intrinsic nucleon structure off-shell [247]. In particular,
the results appear to rule out large bound structure function modifications, and instead
point to a small medium modification of the intrinsic nucleon structure function, which is
complemented by standard many-body nuclear effects. This study therefore illustrates yet
another example of how quark-hadron duality can be applied to relate phenomena which
otherwise do not appear directly related.

2. Duality in the Quark Model

The threshold relations between structure functions near x = 1 and elastic form factors
have met with some degree of phenomenological success. Their appeal is also their simplicity:
there are no model-dependent backgrounds to subtract before discussing resonant properties.
On the other hand, some of the models described in Sec. VB2 suggested that the appearance
of duality was intimately related to cancellations between states having different angular
momentum or parity quantum numbers. At the same time, the simple nature of these models
makes it difficult to draw firm conclusions about the origins of duality in the empirical data.
For instance, while spin degrees of freedom are not necessary to illustrate the main qualitative
features of duality, the examples of spinless constituents involved only electric multipoles,
whereas inclusion of spin leads to both electric and magnetic multipole contributions. In
fact, at large Q2 the latter is expected to dominate. Ultimately, therefore, one would like to
study duality in models with a closer connection to phenomenology to learn about duality in
the physical world. For this to happen, one needs to generalize the model discussions to the
more realistic case of three valence (and possibly even sea) quarks, instead of the simplified
two-body systems considered in Sec. VB.

a. SU(6) Symmetry The SU(6) spin-flavor symmetric quark model serves as a useful
basis for both visualizing the principles underpinning the phenomenon of duality and at the
same time providing a reasonably close contact with phenomenology. Quark models based
on SU(6) spin-flavor symmetry provide benchmark descriptions of baryon spectra, as well
as transitions to excited N∗ states.

In a series of classic early papers, Close, Gilman and collaborators [101,248–250] showed
how the ratios of various deep inelastic structure functions could be dual to sums over N∗

resonances in the l = 0 56-dimensional and l = 1 70-dimensional representations of SU(6).
In particular, they demonstrated that one could construct a set of nucleon resonances, the
sum of whose contributions to inclusive structure functions replicates the results of the naive
quark-parton model.
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Since the nucleon ground state wave function is totally symmetric, the only final state
resonances that can be excited have wave functions which are either totally symmetric or
of mixed symmetry, corresponding to the positive parity (P = (−1)l) 56+ and negative
parity 70− representations, respectively [9]. The relative weightings of the 56+ and 70−

contributions are determined by assuming that the electromagnetic current is in a 35-plet.
Allowing only the non-exotic singlet 1 and 35-plet representations in the t-channel, which
corresponds to qq̄ exchange, the reduced matrix elements for the 56+ and 70− are con-
strained to be equal. In the t-channel these appear as γγ → qq̄, while in the s-channel this
effectively maps onto the leading-twist, handbag diagram in Fig. 46 (a), describing incoher-
ent coupling to the same quark. Exotic exchanges require multi-quark exchanges, such as
qqq̄q̄ in the t-channel, and correspond to the “cat’s ears” diagram in Fig. 46 (b). Physically,
therefore, the appearance of duality in this picture is correlated with the suppression of
exotics in the t-channel [248].

Assuming magnetic couplings and neglecting quark orbital motion, the relative photo-
production strengths of the transitions from the ground state, Eq. (201), to the 56+ and 70−

are summarized in Table I for the F1 (which is related to F2 by the Callan-Gross relation,
F2 = 2xF1, in this approximation) and g1 structure functions of the proton and neutron. For
generality, the contributions from the symmetric (ψρ) and antisymmetric (ψλ) components
of the ground state nucleon wave function,

|N〉 = cos θw|ψρ〉 + sin θw|ψλ〉 , (203)

have been separated, where θw is the mixing angle and ψ = ϕ⊗ χ is a product of the flavor
(ϕ) and spin (χ) wave functions [9]. Defining ρ = cos θw and λ = sin θw, the SU(6) limit
corresponds to λ = ρ (θw = π/4). Remarkably, summing over the full set of states in the
56+ and 70− multiplets, one finds in this case precisely the same structure function ratios
as in the quark-parton model, Eq. (202).

SU(6) rep. 28[56+] 410[56+] 28[70−] 48[70−] 210[70−] total

F p
1 9ρ2 8λ2 9ρ2 0 λ2 18ρ2 + 9λ2

Fn
1 (3ρ+ λ)2/4 8λ2 (3ρ− λ)2/4 4λ2 λ2 (9ρ2 + 27λ2)/2

gp
1 9ρ2 −4λ2 9ρ2 0 λ2 18ρ2 − 3λ2

gn
1 (3ρ+ λ)2/4 −4λ2 (3ρ− λ)2/4 −2λ2 λ2 (9ρ2 − 9λ2)/2

TABLE I. Relative strengths of electromagnetic N → N∗ transitions in the SU(6) quark model.

The coefficients λ and ρ denote the relative strengths of the symmetric and antisymmetric contri-

butions of the SU(6) ground state wave function. The SU(6) limit corresponds to λ = ρ.

From Ref. [117].

Although the s-channel sum was shown by Close et al. [101,248,250] to be dual for ratios
of structure functions, this alone did not explain the underlying reason why any individual
sum over states scaled. The microscopic origin of duality in the SU(6) quark model was
more recently elaborated by Close & Isgur [102], who showed that the cancellations between
the even- and odd-parity states found to be necessary for duality to appear, are realized
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through the destructive interference in the s-channel resonance sum between the 56+ and
70− multiplets. Provided the contributions from the 56+ and 70− representations have
equal strength, this leads exactly to the scaling function proportional to

∑
q e

2
q. In the SU(6)

limit, duality will therefore not be realized unless the 56+ and 70− states are integrated
over. Recall that the usual assignments of the excited states in the quark model place the
nucleon and the P33(1232) ∆ isobar in the quark spin-1/2 octet (28) and quark spin-3/2
decuplet (410) representations of 56+, respectively, while for the odd parity states the 28
representation contains the states S11(1535) and D13(1520), the 48 contains the S11(1650),
D13(1700) and D15(1675), while the isospin-3

2
states S31(1620) and D33(1700) belong to the

210 representation.
From Table I one sees that duality may be satisfied for the proton (with λ = ρ) by

states with W <∼ 1.6 GeV, since states from the 48[70−] and 210[70−] representations at
W ∼ 1.7 GeV make negligible contributions. For neutron targets, on the other hand,
one still has sizable contributions from the 48[70−], which necessitates integrating up to
W ∼ 1.8 GeV. The case of the neutron gn

1 structure function is somewhat exceptional.
Here, the SU(6) limit reveals the intriguing possibility that duality may be localized to
within each of the 56+ and 70− representations individually: the strengths of the N and
∆ transitions (with λ = ρ) in the 56+ are equal and opposite, and the octet and decuplet
contributions in the 70− sum to zero.

Note that the region above W ≈ 1.7 GeV also contains a 56+ multiplet at N = 2 in
the harmonic oscillator. In the nonrelativistic limit, to order ~q 2 ∼ 1/R2 the 56+ and 70−

multiplets would be sufficient to realize closure and duality. The analysis can be extended
to higher ~q 2 by including correspondingly higher multiplets, although the reliability of the
nonrelativistic harmonic oscillator may become questionable at higher ~q 2 [102].

We note again that the above results have been derived assuming magnetic couplings,
which are expected to dominate at large Q2. A realistic description of the empirical data at
low Q2 would require in addition the inclusion of electric couplings, which will give rise to a
nonzero longitudinal structure function FL. Close & Isgur showed in fact that in the SU(6)
limit duality is also realized for FL [102]. In general, however, the interplay of magnetic
and electric interactions will make the workings of duality nontrivial. In the Q2 → 0 limit
both electric and magnetic multipoles will contribute and the interference effects can cause
strong Q2 dependence [248,249], such as that responsible for the dramatic change in sign of
the lowest moment of gp

1 in the transition towards the Gerasimov-Drell-Hearn sum rule at
Q2 = 0 (see Sec. IVC3). Close & Isgur suggest [102] that Bloom-Gilman duality will fail
when the electric and magnetic multipoles have comparable strengths, although the precise
Q2 at which this will occur is unknown.

b. SU(6) Breaking While the SU(6) predictions for the structure functions hold ap-
proximately at x ∼ 1/3, strong deviations are expected at larger x. For instance, the
neutron F n

2 structure function is observed to be much softer than the proton F p
2 for x >∼ 0.5

[9,69,72,251–253], and although the data are not yet conclusive, there are indications that
the polarization asymmetries show a trend towards unity as x→ 1 for both the proton [115]
and neutron [254] (see e.g., Fig. 31).

As discussed in Sec. VC1, for a given N∗ resonance of mass MR, the resonance peak at
x = xR ≡ Q2/(M2

R −M2 +Q2) moves to larger x with increasing Q2. If a given resonance at
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x ∼ 1/3 appears at relatively low Q2, the x ∼ 1 behavior of the resonance contribution to
the structure function will therefore be determined by the N → N∗ transition form factor at
larger Q2. In the context of duality, the specific patterns of symmetry breaking in structure
function ratios as x → 1 may yield information about the Q2 dependence of families of N∗

resonances.
At the quark level, explicit SU(6) breaking mechanisms produce different weightings of

components of the initial state wave function, Eq. (201), which in turn induces different
x dependences for the spin and flavor distributions. At the hadronic level, on the other
hand, SU(6) breaking in the N → N∗ matrix elements leads to suppression of transitions to
specific resonances in the final state, starting from an SU(6) symmetric wave function in the
initial state. For duality to be manifest, the pattern of symmetry breaking in the initial state
must therefore match that in the final state. It is a priori not obvious, however, whether
specific mechanisms of SU(6) breaking will be consistent with duality, and recent studies
[117] have investigated the conditions under which duality can arise in various symmetry
breaking scenarios.

The most immediate breaking of the SU(6) duality could be achieved by varying the
overall strengths of the coefficients for the 56+ and 70− multiplets as a whole. However,
since the cancellations of the N → N∗ transitions for the case of gn

1 occur within each
multiplet, a nonzero value of An

1 can only be achieved if SU(6) is broken within each multiplet
rather than between the multiplets. Some intuition is needed therefore on sensible symmetry
breaking patterns within the multiplets.

In Table I the SU(6) limit is obtained by assigning equal weights for the contributions
to the various N → N∗ transitions from symmetric and antisymmetric components of the
wave function, λ = ρ. On the other hand, the SU(6) symmetry can be broken if the mixing
angle θw 6= π/4. In general, for an arbitrary mixing angle θw, summing over all channels
leads to structure function ratios given by [117]:

Rnp =
1 + 2 sin2 θw

4 − 2 sin2 θw

, Ap
1 =

6 − 7 sin2 θw

6 − 3 sin2 θw

, An
1 =

1 − 2 sin2 θw

1 + 2 sin2 θw

. (204)

If the mass difference between the nucleon and ∆ is attributed to spin dependent forces,
the energy associated with the symmetric part of the wave function will be larger than
that of the antisymmetric component. A suppression of the symmetric |ψλ〉 configuration
at large x (θw → 0) will then give rise to a suppressed d quark distribution relative to u,
which in turn leads to the famous neutron to proton ratio Rnp → 1/4 [91,241,255]. In terms
of the sum over resonances in the final state, this scenario corresponds to the suppression
of the symmetric components of the states in the 56+ and 70− multiplets relative to the
antisymmetric, and the relative transition strengths are given in Table I with λ → 0. In
particular, since transitions to the (symmetric) S = 3/2 or decuplet states (48, 410 and 210)
can only proceed through the symmetric ψλ component of the ground state wave function,
the ψρ components will only excite the nucleon to 28 states. If the ψλ wave function is
suppressed, only transitions to 28 states will be allowed.

The dependence of the structure function ratios in Eq. (204) on the mixing angle θw

means that the SU(6) breaking scenario with ψλ suppression can be tested by simultane-
ously fitting the n/p ratios and the polarization asymmetries. The x dependence of θw(x)
can be fitted to the existing data on unpolarized n/p ratios, and then used to predict the
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FIG. 61. Ratio Rnp of unpolarized neutron to proton structure functions from duality [117],

according to different scenarios of SU(6) breaking: ψρ dominance (dot-dashed); spin-1/2 (S1/2)

dominance (dashed); and helicity-1/2 (σ1/2) dominance (solid), with the respective x → 1 limits

indicated on the ordinate. The data are from SLAC [69,251], analyzed under different assumptions

about the size of the nuclear effects in the deuteron [72].

polarization asymmetries. Unfortunately, the absence of free neutron targets means that
neutron structure information must be inferred from deuteron structure functions, and the
current neutron F n

2 data suffer from large uncertainties associated with nuclear corrections
[72], as illustrated in Fig. 61 for the neutron to proton F2 ratio, Rnp.

A fit to the Rnp data assuming SU(6) symmetry at x ∼ 1/3 and ψρ dominance at
x = 1 (Rnp = 1/4) is consistent with the lower bound on the data, as indicated in Fig. 61
(dot-dashed curve). From the fitted θw(x), the resulting x dependence of the polarization
asymmetries Ap

1 and An
1 is shown in Fig. 62 (dot-dashed curves). The predicted x dependence

of both Ap
1 and An

1 is relatively strong; the SU(6) symmetric results which describe the
data at x ∼ 1/3 rapidly give way to the broken SU(6) predictions as x → 1. In both
cases the polarization asymmetries approach unity as x → 1 [260], in contrast with the
SU(6) results, especially for the neutron. Within the current experimental uncertainties,
the ψλ suppression model is consistent with the x dependence of both the Rnp ratio and the
polarization asymmetries.

An interesting feature of the SU(6) quark model is that duality can be satisfied by
summing over the individual S = 1/2 and S = 3/2 contributions, S1/2 ≡ 28[56+] + 28[70−]
+ 28[70−], and S3/2 ≡ 410[56+] + 48[70−], separately, as well as for the total S1/2 +S3/2. If
the relative contributions of the S1/2 and S3/2 channels are weighted by cos2 θs and sin2 θs,
respectively, then the unpolarized and polarized structure function ratios can be written in
terms of the mixing angle θs as [117]
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FIG. 62. Proton (left) and neutron (right) polarization asymmetries from duality [117], accord-

ing to different scenarios of SU(6) breaking, as in Fig. 61. The data are a compilation of large-x

results from experiments at SLAC [108,141,256,257], CERN-SMC [258], HERMES [110,259] and

Jefferson Lab [254].

Rnp =
6(1 + sin2 θs)

19 − 11 sin2 θs

, Ap
1 =

19 − 23 sin2 θs

19 − 11 sin2 θs

, An
1 =

1 − 2 sin2 θs

1 + sin2 θs

. (205)

The presence of spin-dependent forces between quarks, such as from single gluon exchange,
can lead to different weightings of the S1/2 and S3/2 components. In particular, the expected
dominance of the magnetic coupling at high Q2 leads to the suppression of S3/2 states.
This also produces the mass splitting between the nucleon and ∆, and may be related to
the anomalous suppression of the N → ∆ transition form factor relative to the elastic
[54,104,261]. The dominance of S1/2 configurations (θs → 0) at large x leads to Rnp → 6/19,
and gives unity for the polarization asymmetries Ap

1 and An
1 .

Fitting the mixing angle θs(x) to Rnp with the above x → 1 constraint, the resulting
proton and neutron polarization asymmetries are shown in Fig. 62 (dashed curves). The
predicted x dependence of both Ap

1 and An
1 in this scenario is similar to that in the ψλ

suppression model, with a slightly faster transition to the asymptotic behavior. The S3/2

suppression model can be tested by studying the electroproduction of the l = 2 56+ states
P31(1930), P33(1920), F35(1905) and F37(1950). In the absence of configuration mixing,
transitions to each of these resonances should die relatively faster with Q2 than for the 28
and 210 states, especially for the F37(1950), where mixing should be minimal.

As discussed above, duality implies that structure functions at large x are determined by
transition form factors at high Q2. At large enough Q2 one expects these to be constrained
by perturbative QCD, which predicts that photons predominantly couple to quarks with
the same helicity as the nucleon [55,262]. Since for massless quarks helicity is conserved,
the σ3/2 cross section is expected to be suppressed relative to the σ1/2 cross section. The
question then arises: Can duality between leading-twist quark distributions and resonance
transitions exist when the latter are classified according to quark helicity rather than spin?

To answer this, consider the relative strengths of the helicity-1/2 and helicity-3/2 con-
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tributions to the cross section to be weighted by cos2 θh and sin2 θh, respectively. Using the
coefficients in Table I, the ratios of structure functions can then be written in terms of the
mixing angle θh as [117]

Rnp =
3

7 − 5 sin2 θh

, Ap
1 =

7 − 9 sin2 θh

7 − 5 sin2 θh

, An
1 = 1 − 2 sin2 θh . (206)

In the θh → 0 limit the σ3/2 suppression scenario predicts that A1 → 1 for both protons and
neutrons, and that the neutron to proton ratio Rnp → 3/7. This latter result is identical to
that obtained in the classic quark level calculation of Farrar & Jackson [55] on the basis of
perturbative QCD counting rules. Again, fitting the x dependence of the mixing angle θh(x)
to the Rnp data with the corresponding x→ 1 constraint, the resulting predictions for Ap,n

1

are shown in Fig. 62 (solid curves). Compared with the S3/2 and ψλ suppression scenarios,
the σ1/2 dominance model predicts a somewhat faster approach to the asymptotic x → 1
limits. In particular, it seems to be disfavored by the latest An

1 data at large x from Jefferson
Lab [254], which suggest a less rapid rise in An

1 with increasing x. While it is possible that
at x ≈ 1 the structure function is governed by helicity conservation, it appears that in the
kinematical region currently accessible perturbative QCD is not yet applicable.

Before concluding the discussion of duality in the quark model, we should note that
whereas each of the symmetry breaking scenarios described above are consistent with duality,
other scenarios are not. For instance, suppression of the ∆ or other decuplet contributions
(410 in the 56+ and 210 in the 70−) leads to inconsistent results. Namely, the ratio of ∆u/u,
extracted from the Ap

1 and An
1 polarization asymmetries and Rnp, becomes greater than unity,

thereby violating a partonic interpretation of the structure functions [117]. The reason for
this is that removing ∆ states from the s-channel sum spoils the cancellation of exotic
exchanges in the t-channel, which cannot be interpretated as single parton probabilities,
resulting in the failure of duality in this scenario. Inclusion of ∆ states, as well as the
nucleon elastic, is vital for the realization of duality.

3. Duality in Electron-Pion Scattering

The discussion of duality thus far has focussed on scattering from the nucleon. As
the simplest qq̄ bound state, the pion plays a unique role in QCD: on the one hand, its
anomalously small mass suggests that it should be identified with the pseudo-Goldstone
mode of dynamical breaking of chiral symmetry in QCD; on the other, high-energy scattering
experiments reveal a rich substructure which can be efficiently described in terms of current
quarks and gluons. The complementarity of these pictures may also reflect, in a loose sense,
a kind of duality between the effective, hadronic description based on symmetries, and a
microscopic description in terms of partons.

Shortly after the original observations of Bloom-Gilman duality for the proton [2,3],
generalizations to the case of the pion were explored. By extending the finite-energy sum
rules [28] devised for the proton duality studies, Moffat and Snell [263] derived a local duality
sum rule relating the elastic pion form factor Fπ(Q2) with the scaling structure function of
the pion, νW π

2 ≡ F π
2 ,
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[Fπ(Q2)]2 ≈
∫ ωmax

1
dω νW π

2 (ω) , (207)

where νW π
2 here is a function of the scaling variable ω ≡ 1/x. The upper limit of the

integration ωmax = 1 + (W 2
max −m2

π)/Q2 was set in Ref. [263] to Wmax ≈ 1.3 GeV, in order
to include most of the effect of the hadron pole, and not too much contribution from higher
resonances.

The validity of the finite-energy sum rule relation (207) was tested in early analyses
[263,264] using Regge-based models of the pion structure function. More recently, data from
the Drell-Yan process have allowed the duality relation to be tested using phenomenological
inputs only [265]. Using the fit to the F π

2 (x) data from the E615 experiment at Fermilab
[266], the resulting form factor Fπ(Q2) extracted from Eq. (207) is shown in Fig. 63 (left
panel, solid curve). The agreement appears remarkably good, although the magnitude of
the form factor depends somewhat on the precise value chosen for Wmax. Nevertheless, the
shape of the form factor is determined by the x dependence of the structure function at
large x. In particular, while a (1 − x) behavior leads to a similar Q2 dependence to that
for the E615 fit, assuming a (1− x)2 behavior gives a form factor which drops more rapidly
with Q2. This simply reflects the kinematic constraint (1 − 1/ω) ∼ 1/Q2 at fixed W .
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FIG. 63. (Left panel) Local duality prediction [265] for the pion form factor, using phenomeno-

logical pion structure function input from the Fermilab E615 Drell-Yan experiment [266] (solid),

and the forms F π
2 (x) ∼ (1 − x) and (1 − x)2 (dashed) [267]. The asymptotic leading-order pQCD

prediction [268] (dotted) is shown for reference. (Right panel) Ratio of the pion resonance (elastic

+ π→ρ transition) contributions relative to the DIS continuum, for different values of Wmax. The

two sets of upper and lower curves reflect the uncertainties in the π → ρ transition form factor.

Although the apparent phenomenological success of the local duality relation (207) is
alluring, there are theoretical reasons why its foundations may be questioned. In fact,
the workings of local duality for the pion are even more intriguing than for the nucleon.
Because it has spin 0, elastic scattering from the pion contributes only to the longitudinal
cross section. On the other hand, the spin-1/2 nature of quarks guarantees that the deep
inelastic structure function of the pion is dominated at large Q2 by the transverse cross
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section [5,6,55]. Taken at face value, the relation (207) would suggest a nontrivial duality
relation between longitudinal and transverse cross sections, in contradiction with the parton
model expectations.

While the elastic form factor of the pion is purely longitudinal, the π → ρ transition on
the other hand is purely transverse. It has been suggested [6] that the average of the pion
elastic and π → ρ transition form factors may instead dual the deep inelastic pion structure
function at x ∼ 1. Taking a simple model [267] for the low-W part of the pion structure
function in which the inclusive pion spectrum at W <∼ 1 GeV is dominated by the elastic and
π → ρ transitions, one can estimate the degree to which such a duality may be valid. Gener-
alizing Eq. (207) to include the lowest-lying longitudinal and transverse contributions to the
structure function, one can replace the left hand side of (207) by [Fπ(Q2)]2 + ωρ[Fπρ(Q

2)]2,
where ωρ = 1 + (m2

ρ −m2
π)/Q2.

The sum of the lowest two “resonance” contributions (elastic + ρ) to the generalized
finite-energy sum rule is shown in Fig. 63 (right panel) as a ratio to the corresponding
leading-twist DIS structure function over a similar range of W . The upper and lower sets of
curves envelop different models of Fπρ(Q

2) [269], which can be seen as an indicator of the
current uncertainty in the calculation. Integrating to Wmax = 1 GeV, the resonance/DIS
ratio at Q2 ∼ 2 GeV2 is ∼ 50 ± 30% above unity, and is consistent with unity for Q2 ∼ 4–
6 GeV2. As a test of the sensitivity of the results to the value of Wmax, the resonance/DIS
ratio is also shown for Wmax = 1.3 GeV. In this case the agreement is better for Q2 ∼ 1–
3 GeV2, with the ratio being ∼ 30 ± 20% below unity for Q2 ∼ 4–6 GeV2.

Given the simple nature of the model used for the excitation spectrum, and the poor
knowledge of the π → ρ transition form factor, as well as of the pion elastic form factor
beyond Q2 ≈ 2 GeV2, the comparison can only be viewed as qualitative. However, the
agreement between the DIS and resonance contributions appears promising. Clearly, data on
the inclusive π spectrum at low W would be valuable for testing the local duality hypothesis
more quantitatively. In addition, measurement of the individual transverse and longitudinal
inelastic cross sections of the pion, using LT-separation techniques, would allow duality to
be tested separately for the longitudinal and transverse structure functions of the pion.

Going from the discussion of local duality to global duality, one can use the available pion
structure function data to perform a QCD moment analysis, similar to that in Sec. VA1 for
the proton, to quantify the role of higher twists in F π

2 [267]. The n = 2 moment of the pion
F π

2 structure function is shown in Fig. 64 as a function of Q2, together with the leading-twist
and elastic contributions. Assuming that the spectrum of π → π∗ transitions is dominated
at low W by the elastic and π → ρ transitions, the contribution of the resonance region
(which can be taken as W <∼ 1 GeV) to the lowest moment of F π

2 is ∼ 50% at Q2 ≈ 2 GeV2,
and only falls below 10% for Q2 >∼ 5 GeV2. The pion elastic component, while negligible for
Q2 >∼ 3 GeV2, is comparable to the leading-twist contribution at Q2 ≈ 1 GeV2. Combined,
this means that the higher-twist corrections to the n = 2 moment are ∼ 50% atQ2 = 1 GeV2,
∼ 30% at Q2 = 2 GeV2, and only become insignificant beyond Q2 ≈ 6 GeV2.

The size of the higher-twist contribution at Q2 ∼ 1 GeV2 is larger than that found
in similar analyses of the proton F2 [173] and g1 [177] structure functions. This can be
qualitatively understood in terms of the intrinsic transverse momentum of quarks in the
hadron, 〈k2

T 〉, which typically sets the scale of the higher-twist effects. Since the transverse
momentum is roughly given by the inverse size of the hadron, 〈k2

T 〉 ∼ 1/R2, the smaller
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different models for the π → ρ transition [267].

confinement radius of the pion means that the average 〈k2
T 〉 of quarks in the pion will be

larger than that in the nucleon. Therefore the magnitude of higher twists in F π
2 is expected

to be somewhat larger (O(50%)) than in F p
2 .

D. Duality in Semi-Inclusive Reactions

In the previous sections we explored the extent to which quark-hadron duality in inclusive
processes can be understood within theoretical models, and how duality can be utilized in
phenomenological applications relating deep inelastic structure functions to specific exclusive
channels. To establish whether duality holds for a particular observable, one obviously needs
to know both its low-energy and high-energy behavior, the latter which requires one to be in a
region of kinematics where perturbative QCD is applicable. For inclusive structure functions
scaling has been well established over a large range of Q2, even down to Q2 <∼ 1 GeV2 in some
cases. For exclusive observables, on the other hand, such as form factors, empirical evidence
suggests that considerably larger Q2 values are necessary for the onset of the expected pQCD
behavior.

Exactly where perturbative scaling sets in is of course a priori unknown – generally
speaking, the less inclusive an observable the larger the scale at which a pQCD description
is likely to hold. One may expect therefore that duality may also set in later in reactions
which are more exclusive. Although this may make the study of duality in less inclusive
observables more difficult experimentally at existing facilities, it is nevertheless crucial to
explore the extent and limitations of duality in different reactions if one is to fully understand
its origins in Nature.
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In this section we generalize the duality concept to the largely unexplored domain of
semi-inclusive electron scattering, eN → ehX, in which a hadron h is detected in the final
state in coincidence with the scattered electron. The virtue of semi-inclusive production
lies in the ability to identify, in a partonic basis, individual quark species in the nucleon
by tagging specific mesons in the final state, thereby enabling both the flavor and spin
of quarks and antiquarks to be systematically determined. Within a partonic description,
the scattering and production mechanisms become independent, and the cross section (at
leading order in αs) is given by a simple product of quark distribution and quark → hadron
fragmentation functions (see also Eq. (77)),

dσ

dxdz
∼

∑

q

e2q q(x) Dq→h(z) , (208)

where the fragmentation function Dq→h(z) gives the probability for a quark q to fragment
to a hadron h with a fraction z of the quark (or virtual photon) energy, z = Eh/ν. In
the current fragmentation region the quark typically fragments into mesons, which we shall
focus on here.

A central question for the applicability of a partonic interpretation of semi-inclusive DIS
is whether the probability to incoherently scatter from an individual parton (x distribution),
and the subsequent probability that the parton fragments into a particular meson (z distri-
bution), can be factorized as in Eq. (208). While this is expected at high energies, it is not
clear that this is the case at low energies, such as those available at HERMES or Jefferson
Lab. It is necessary therefore to explore the conditions under which factorization can be ap-
plicable at energies where resonances still play an important role. In Sec. VC3 we reviewed
the empirical status of semi-inclusive pion production. In this section we complement that
discussion by illustrating within a specific model how scaling and factorization can arise
from a hadronic description of semi-inclusive scattering. Following this we consider a more
local version of duality in jet formation at high energies.

1. Dynamical Models of Duality in Pion Production

In terms of hadronic variables the fragmentation process can be described through the ex-
citation of nucleon resonances, N∗, and their subsequent decays into mesons and lower-lying
resonances, which we denote by N ′∗. The hadronic description must be rather elaborate,
however, as the production of a fast outgoing meson in the current fragmentation region at
high energy requires nontrivial cancellations of the angular distributions from various decay
channels [102,197]. The duality between the quark and hadron descriptions of semi-inclusive
meson production is illustrated in Fig. 65. Heuristically, this can be expressed as [102,270]

∑

N ′∗

∣∣∣∣∣
∑

N∗

Fγ∗N→N∗(Q2,W 2) DN∗→N ′∗M(W 2,W ′2)

∣∣∣∣∣

2

=
∑

q

e2q q(x) Dq→M(z) , (209)

where Dq→M is the quark → meson M fragmentation function, Fγ∗N→N∗ is the γ∗N → N∗

transition form factor, which depends on the masses of the virtual photon and excited
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FIG. 65. Duality between descriptions of semi-inclusive meson production in terms of nucleon

resonance (left) and quark (right) degrees of freedom [102,270].

nucleon (W = MN∗), and DN∗→N ′∗M is a function representing the decay N∗ → N ′∗M ,
where W ′ is the invariant mass of the final state N ′∗.

The summations over hadronic states in Eq. (209) are considerably more involved theo-
retically than the corresponding sums in inclusive scattering. Nevertheless, there have been
calculations within models, similar to those considered in Sec. VB for inclusive scattering,
which have attempted to carry out the resonance sums explicitly. Close & Isgur [102] ap-
plied the SU(6) symmetric quark model to calculate production rates in various channels
in semi-inclusive pion photoproduction, γN → πX. (In this model the results also gener-
alize to virtual photoproduction.) The pattern of constructive and destructive interference,
which was a crucial feature of the appearance of duality in inclusive structure functions, is
also repeated in the semi-inclusive case. Defining the yields of photoproduced pions from a
nucleon target as

N π
N(x, z) =

∑

N ′∗

∣∣∣∣∣
∑

N∗

FγN→N∗(Q2,W 2) DN∗→N ′∗π(W 2,W ′2)

∣∣∣∣∣

2

, (210)

the breakdown of N π
N into the individual states in the SU(6) multiplets for the final W ′

states is shown in Table II for both proton and neutron initial states.
A comparison of the results of the hadronic sums with the quark level calculation,

Eq. (208), can be made by considering the single quark fragmentation limit, in which
z ≈ 1. Here the scattered quark has a large probability of emerging in the observed pion,
and the hadronization process is dominated by a single (leading) fragmentation function.
For u quarks, the fragmentation into π+ at large z dominates over that into π−, so that
Dπ−

u /Dπ+

u → 0 as z → 1. Isospin symmetry also implies that Dπ−

d = Dπ+

u . This limit allows
ratios of production rates to be computed directly in terms of ratios of quark distributions.
For the case of SU(6) symmetry, where the quark distributions are simply related by u = 2d,
one finds for the relative yields of π± mesons off protons to neutrons

N π+

p

N π+

n

=
N π−

n

N π−

p

= 2 , (211)
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N ′∗ multiplet γp→ π+N ′∗ γp→ π−N ′∗ γn→ π+N ′∗ γn→ π−N ′∗

28 [56+] 100 0 0 25
410 [56+] 32 24 96 8
28 [70−] 64 0 0 16
48 [70−] 16 0 0 4

410 [70−] 4 3 12 1

total N π
N 216 27 108 54

TABLE II. Relative strengths of SU(6) multiplet contributions to inclusive π± photoproduction

off the proton and neutron [102] (arbitrary units).

while the ratio of π+ to π− yields is

N π+

p

N π−

p

= 8 ,
N π+

n

N π−

n

= 2 , (212)

for proton and neutron targets, respectively. The total π yield for protons versus neutrons,
N π++π−

p /N π++π−

n , is then equal to 3/2.
Comparing the parton level results with the coefficients in Table II, one sees that these

ratios coincide exactly with those obtained from summations over coherent states in the 56+

and 70− multiplets. This suggests that both factorization and duality arise by summing over
all the states in the lowest-lying even- and odd-parity multiplets. Furthermore, the large
coefficients in the first three columns of Table II suggest that an approximate duality may be
obtained by including just the 56+ multiplet and the 28[70−] states, which phenomenologi-
cally corresponds to integrating over W ′ up to ∼ 1.7 GeV. For the N π−

p and N π+

n channels,
duality is saturated to ≈ 90% already by the nucleon elastic and ∆ states alone. One could
therefore expect factorization and approximate duality here at W ′2 ≤ 3 GeV2.

Preliminary results on π± electroproduction from Jefferson Lab [161] are shown in Fig. 66
for the ratio of π+ to π− mesons from proton and neutron targets (the neutron data are
obtained from the difference of deuteron and proton yields). Several interesting features are
evident here. Because Q2 is relatively small (Q2 ∼ few GeV2), some resonant features are
clearly visible in the data, especially at low final state hadron mass W ′. For the nucleon
elastic contribution, since only π+ production is possible from the proton, and π− from the
neutron, the proton ratio in Fig. 66 rises steeply as W ′ → 1 GeV, while the neutron ratio
drops rapidly to 0. The same feature is seen in the z dependence as z → 1.

In the region of the ∆ resonance (W ′ ≈ 1.25 GeV) a pronounced peak is seen in the
neutron ratio, but a trough appears in the corresponding proton data. Qualitatively, this
is in agreement with the values for the π+/π− ratios in Table II, which are 9 times larger
for the neutron → ∆ transition than for the proton → ∆. Of course, we do not expect
quantitative agreement with the model, since, for instance, the results in Table II do not
include nonresonant backgrounds, which would tend to dilute the ratios for larger W ′ and
generally bring them closer to unity. For largerW ′ the proton and neutron ratios are inverted
again, reflecting the stronger production rates of the [70−] states off the proton than off the
neutron, as predicted in Table II.
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FIG. 66. Preliminary data from Jefferson Lab experiment E00-108 [161] for the ratio of π+ to

π− semi-inclusive cross sections from proton and neutron targets, as a function of the final state

missing mass W ′ (upper panel) and z (lower panel). The value of x is fixed at x = 0.32.

The results in Table II also suggest an explanation for the smooth behavior of the ra-
tio of fragmentation functions D−/D+ ≡ Dπ+

d /Dπ+

u for a deuterium target in Fig. 45 of
Sec. IVD, even though the data span the resonance region. Since the ratio D−/D+ ≈
(4 −N π+

/N π−

)/(4N π+

/N π− − 1), from the relative weights of the matrix elements in Ta-
ble II one observes that the sum of the p and n coefficients for π+ production is always 4
times larger than for π− production. In the SU(6) limit, therefore, the resonance contribu-
tions to this ratio cancel exactly, leaving behind only the smooth background, as would be
expected at high energies. This may account for the glaring lack of resonance structure in
the resonance region fragmentation functions in Fig. 45.

While these results are certainly encouraging, one should caution, however, that the coef-
ficients in Table II apply strictly only to the imaginary parts of the γN → πN ′∗ amplitudes.
In principle one should also consider u-channel processes, with the π emitted prior to the
photoabsorption. These diagrams would give inverted ratios for π+/π− in Table II, and
dilute the overall predictions. On the other hand, Barbour et al. [271] have shown that, at
least at small Q2, using fixed-t dispersion relations the s- and u-channel resonances cancel
to some extent for the real part of the amplitude, so that the charge ratios in Eqs. (211)
and (212) may not be affected too strongly [102]. Finally, while these results are restricted
to the case of SU(6) symmetry, extensions to incorporate explicit SU(6) breaking, along the
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lines of those in Sec. VC2 for inclusive structure functions, are also possible, and would be
valuable in establishing a closer connection with phenomenology.

2. Jet Formation

At high energies a characteristic feature of semi-inclusive single particle spectra is the
production of jets in the current fragmentation region. In terms of resonances, the formation
of a jet can be thought of as arising from strong constructive interference in the forward
region, and destructive interference in the backward hemisphere [102]. In principle this
may be achieved by summing over different partial waves l which have specific angular
distributions associated with the respective spherical harmonics, although in practice this
remains to be demonstrated in specific dynamical models. A first attempt in this direction
within the SU(6) quark model was described in the preceding section.

A somewhat different application of quark-hadron duality in jet formation in DIS was
proposed by Azimov et al [272]. At large Q2 ≫ Λ2

QCD, the conventional description of final
state formation is in terms of hard partonic scattering, giving rise to a partonic cascade,
followed by soft fragmentation into hadrons. Monte Carlo fragmentation models are usually
used to generate the perturbative cascade down to a scale Q2

0 ∼ 1 GeV2, below which
nonperturbative models are invoked to describe hadron formation — see Fig. 67 (a).

FIG. 67. Schematic illustration of hadron production within (a) Monte Carlo fragmentation

models in which hadronization occurs below a scale Q0, and (b) within a pQCD framework together

with local parton-hadron duality (LPHD). (Adapted from Ref. [273].)

(a)

(b)
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The Monte Carlo models describe many properties of hadronic final states in high energy
reactions, albeit with the aid of a large number of free parameters. As an alternative to
the Monte Carlo methods, a local correspondence between parton and hadron distributions
in hadronic jets, termed “Local Parton Hadron Duality” (LPHD) was proposed [272] as a
way of describing the hadronic final state. This LPHD hypothesis states that sufficiently
inclusive hadronic observables may be described entirely at the partonic level, without any
reference to hadronization. The key assumption in LPHD is that the perturbative cascade
can be evolved down to a very low scale Q0 ∼ ΛQCD, with the conversion of partons into
hadrons involving only small momentum transfers [274], see Fig. 67 (b). The prediction here
is that hadronic spectra become proportional to those of partons as the cut-off scale Q0 is
decreased towards ΛQCD.N

yc = �QcQ �2Jets(Q = 91 GeV) Hadrons(Qc ' 0.5 GeV)
1

10

100

1e-05 0.0001 0.001 0.01 0.1 1

FIG. 68. Average jet multiplicity N as a function of the resolution parameter yc = (Qc/Q)2,

at fixed Q = 91 GeV (lower set, “Jets”), and for different energies Q = 3–91 GeV with fixed

Qc = 0.508 GeV (upper set, “Hadrons”) [275,276]. The curves are described in the text.

Data on fragmentation in e+e− collisions indeed show that the broad features of hadronic
jets, such as particle multiplicities, correlations, and inclusive spectra, calculated at the
parton level agree surprisingly well with the measured ones, as would be expected from
the LPHD hypothesis [274]. Figure 68 shows results [275,276] on jet multiplicities in e+e−

collisions at LEP [277,278] as a function of the resolution parameter yc = (Qc/Q)2, where Q
here is the center of mass energy, and Qc is the parton transverse momentum infrared cut-off
scale [275]. The lower data set corresponds to jets produced at Q = 91 GeV, and the curve
through the data is obtained from a numerical solution of the parton jet evolution equations
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FIG. 69. Factorial moment F2 for charged particles in the current region as a function of

pcut
⊥ from ZEUS [280], compared with Monte Carlo fragmentation models (ARIADNE, HERWIG,

LEPTO), and the parton level calculation using LPHD. (Adapted from Ref. [280].)

[279]. The curve diverges for small cut-off Qc as αs(k⊥) becomes singular for small parton
transverse momenta k⊥. The upper data set shows the average multiplicities at different
energies between Q = 3 and 91 GeV, calculated at fixed Qc = 0.508 GeV. The solid curve
is based on the duality picture, in which the partonic final state corresponds to a hadronic
final state at k⊥ ∼ Q0 → Qc, with Qc ≈ 0.5 GeV. The result is interpreted as indicating
that in the LPHD scenario hadrons correspond to narrow jets with resolution Q0 ≈ 0.5 GeV,
and that the final stage of jet evolution is reasonably well represented by a partonic cascade
even though αs is large [276].

To further quantify the validity of LPHD, the ZEUS Collaboration at HERA measured
multiplicity distributions in e+p deep inelastic scattering at very large Q2 (Q2 > 1000 GeV2)
in restricted phase-space regions. The particle multiplicities were studied in terms of the
normalized factorial moments, defined as

Fq(Ω) =
〈n(n− 1) · · · (n− q + 1)〉

〈n〉q , q = 2, 3, . . . (213)

where q = 2, 3, . . . is the degree of the moment, and n is the number of particles measured
inside a specified phase-space region Ω, with 〈· · ·〉 denoting the average over all events. The
factorial moments are convenient tools to characterize the multiplicity distributions. As a
reference point, for uncorrelated particle production within Ω, one has Fq = 1 for all q.

Correlations between particles lead to a broadening of the multiplicity distribution and
dynamical fluctuations. Figure 69 shows a typical factorial moment, F2, measured by ZEUS
[280] as a function of a transverse momentum cut, pcut

⊥ . As pcut
⊥ decreases below 1 GeV, the
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moment is seen to rise, which agrees with the various Monte Carlo models of fragmentation
(ARIADNE, HERWIG, LEPTO). On the other hand, the data disagree with perturbative
calculations (labeled “LPHD”) in which the partonic cascade is evolved down to Q0 =
0.27 GeV, which predict a downturn in the moment with decreasing pcut

⊥ . In fact, the pQCD
prediction is

Fq(p
cut
⊥ ) ≃ 1 +

q(q − 1)

6

log(pcut
⊥ /Q0)

log(E/Q0)
, (214)

where E is the initial energy of the outgoing quark. Thus the moments are predicted to
approach unity for pcut

⊥ ∼ Q0, in contrast to the rise observed in the data.
Similar behavior is seen in the other factorial moments (for q = 3, 4, · · ·), suggesting that

additional nonperturbative effects related to the proton remnant are necessary to explain
the data. The results indicate therefore that the strict LPHD hypothesis, with “one parton–
one hadron” equivalence, is violated at a quantitative level for the hadronic multiplicities.
This suggests that the LPHD concept is applicable to more inclusive or global (averaged)
variables, and does not apply at a too exclusive level. Instead, a correspondence between
averaged local phase-space densities of partons and hadrons is more appropriate [274]. In
other words, as we have seen in other contexts, local duality cannot be too local!

E. Duality in Exclusive Reactions

In the previous sections we have reviewed examples of some of the successes and limita-
tions of duality in inclusive and semi-inclusive electron scattering. The general folklore, as
mentioned above, is that duality works better for inclusive observables than for exclusive,
partly because perturbative behavior appears to set in at higher Q2 for the latter, and partly
because there are fewer hadronic states over which to average. For exclusive processes, such
as the coincidence production of a meson M and baryon B in the final state, eN → e′MB,
duality may be more speculative. Nevertheless, there are correspondence arguments which
relate the exclusive cross sections at low energy to inclusive production rates at high energy.
In this section we review the exclusive–inclusive correspondence principle, and illustrate this
with phenomenological examples in Compton scattering and exclusive pion production.

1. Correspondence Principle

This exclusive–inclusive connection in hadronic physics dates back to the early dates of
deep inelastic scattering and the discussion of scaling laws in high energy processes. Bjorken
& Kogut [226] articulated the correspondence relations by demanding the continuity of the
dynamics as one goes from one (known) region of kinematics to another (which is unknown or
poorly known). The authors in fact draw an analogy with Bohr’s use of the correspondence
principle in quantum mechanics, whereby the behavior of a quantum theory is connected
with the known classical limit, which in turn leads to insights into the quantum theory itself.

For two-body processes, such as γ∗N → MB, the correspondence principle connects
properties of exclusive (resonant) final states with inclusive particle spectra, described in
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FIG. 70. Momentum spectrum of produced hadrons in the inclusive hadron production reaction

γ∗N →MX. From Ref. [226].

terms of the differential cross section, Ed3σ/dp3, for the corresponding reaction γ∗N →
MX, where E and p are the energy and momentum of one of the observed final state
particles. An illustration of a typical inclusive momentum spectrum for the observed particle
M is shown in Fig. 70. As p increases, one steps from the inclusive continuum to the
region dominated by resonances. The correspondence argument states that the magnitude
of the resonance contribution to the cross section should be comparable to the continuum
contribution extrapolated from high energy into the resonance region,

∫ pmax

pmax−M2
X

/4pmax

dp E
d3σ

dp3

∣∣∣∣∣
incl

∼
∑

res

E
dσ

dp2
T

∣∣∣∣∣
excl

, (215)

where the integration region over the inclusive cross section includes contributions up to
a missing mass MX . The inclusive cross section d3σ/dp3 is generally a function of the
longitudinal momentum fraction x, the transverse momentum pT , and the invariant mass
squared s,

1

σ

Ed3σ

dp3
= f(x, p2

T , sQ
2) . (216)

At large s (or equivalently large Q2) this effectively reduces to a function of only x and p2
T ,

f(x, p2
T , sQ

2) → f(x, p2
T ) , s→ ∞ . (217)

Although the relation (215) does not represent an exact equality, it does imply that there
should be no systematic variation of either side of the equation with external parameters.

Examples of applications of the correspondence relation (215) were given by Bjorken &
Kogut [226] for various hadronic reactions, as well as for e+e− annihilation into hadrons (see
Sec. VIB below). For inclusive electroproduction, it was used to derive the Drell-Yan–West
relation between the asymptotic behavior of the elastic form factor and structure function
in the x → 1 limit (Sec. VC1). One of the most direct application is to (real and virtual)
Compton scattering, which we discuss next.
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2. Real Compton Scattering

Soon after Bjorken & Kogut suggested the exclusive-inclusive correspondence, it was
used [281] to predict the behavior of the real Compton scattering (RCS) cross section off the
proton, γp → γp, at large angles in the center of mass frame. At high energy the inclusive
cross section for the reaction γp → γX can be written (at leading order in αs) in terms of
quark distribution functions [282],

E
d3σ

dk3
=

2α2(s+ u)(s2 + u2)

s2t2(−u)
∑

q

e4q x q(x) , (218)

where k is the momentum of the outgoing photon, s, t and u are the usual Mandelstam
invariants (s+ t+ u = 2M2), and x = −t/2Mν is identified with the proton’s longitudinal
momentum fraction carried by the quark. (Note that here −t plays the role of the large
momentum scale, in analogy with Q2 in DIS.) For large x the cross section is dominated by
valence quarks, and the sum over quark charges in Eq. (218) can be replaced by

∑

q

e4q x q(x) →
2(16 + d(x)/u(x))

9(4 + d(x)/u(x))
F p

1 (x) . (219)

At x ≈ 1, one can use the local Bloom-Gilman duality relation in Eq. (190) to replace the
F p

1 structure function by the proton magnetic form factor, GM(t), in which case the RCS
cross section at large −t takes the simple form [281]

dσ

dt
≈ 8πα2

9

s2 + u2

s3(−u) (Gp
M(t))2 , (220)

where one has assumed d/u ≪ 1 at x = 1. Using the parameterization of the proton
magnetic form factor from Ref. [283], the differential cross section dσ/dt is plotted in Fig. 71
versus −t for several photon beam energies, Eγ = (s−M2)/2M .

The curves are compared with wide-angle Compton scattering data from SLAC [284] at
−t <∼ 1 GeV2 and from Cornell [285] for −t >∼ 1 GeV2. Although the calculation underes-
timates the magnitude of the data somewhat, it does follow the general trend of the data,
becoming a less steep function of t at large −t. Upcoming data from the Jefferson Lab ex-
periment E99-114 [286] will extend the kinematical range to −t = 6 GeV2 for Eγ = 3–6 GeV,
which will allow more comprehensive tests of the correspondence relation at higher −t.

3. (Deeply) Virtual Compton Scattering

An extension of the study of duality in Compton scattering can be made to the case of
virtual photons, and the corresponding virtual Compton scattering (VCS) process, ep →
eγp. The ability to vary the virtual photon mass allows one to compare cross sections at the
same s for different values of Q2, and track the behavior of resonances as one moves from
low Q2 to high Q2. In fact, this is precisely what led to the observation of Bloom-Gilman
duality in deep inelastic scattering, with the difference here that one probes the real part of
the virtual Compton scattering amplitude rather than the imaginary part.
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FIG. 71. Cross section for wide-angle Compton scattering using the inclusive–exclusive corre-

spondence relation (220). The data are from SLAC [284] for Eγ between 5 and 17 GeV (filled

symbols) and from Cornell [285] for Eγ between 2 and 6 GeV (open symbols).

The analogy with DIS can be brought even closer by considering VCS in the limit of
large Q2, known as deeply virtual Compton scattering (DVCS). Interest in this reaction has
been fostered by the realization that at high Q2 DVCS provides access to generalized parton
distributions (GPDs), which are generalizations of parton distribution functions in which
the initial and final hadron momenta are no longer identical [287–289]. GPDs have come
to prominence in recent years as a means of extracting information on the orbital angular
momentum carried by quarks and gluons in the nucleon, and hence on the decomposition
of the nucleon spin into the various components. Being functions of both the longitudinal
and transverse parton momenta, they also offer the prospect of mapping out a complete,
three-dimensional representation of partons in the nucleon [290].

One of the important practical questions is whether the GPD formalism is applicable at
intermediate energies, such as at HERMES or at Jefferson Lab, and it is here that one may
appeal to duality for an answer. In particular, if one can demonstrate that duality applies
also to the case of DVCS, then a partonic interpretation of the scattering, for both the real
and imaginary parts, may be valid down to low Q2.

This problem has been investigated recently by Close & Zhao [215] in a generalization
of the scalar constituent quark model with a harmonic oscillator potential discussed in
Sec. VB2 for the deep inelastic structure functions [102,197]. The non-forward Compton
scattering process is illustrated in Fig. 72, where the initial and final photon momenta are
denoted by q and k, respectively, and the internal “blob” represents coherent intermediate
resonant states. In the limit k → q the results must obviously collapse to the forward
scattering case. For an idealized nucleon target composed of scalar quark constituents, the
generalized longitudinal response can be written in analogy with the response for forward
scattering in Eq. (166). For N even (= 2n) or N odd (= 2n + 1) excited states, one has
[215]
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FIG. 72. Schematic diagram for quark-hadron duality in non-forward Compton scattering.

(Adapted from Ref. [215].)

R̃L(ν, ~q,~k,∆2) =
∑

N(n)

1

4E0EN

(E0 ± EN )2δ(ν + E0 ∓ EN)

×





N∑

l=0(1)

[
(e1 + e2)

2F
(l)
0,2n(~q)F

(l)
0,2n(~k)

+ (e1 − e2)
2F

(l)
0,2n+1(~q)F

(l)
0,2n+1(~k)

] √ 4π

(2l + 1)
Yl0(θ)

}
, (221)

where θ is the angle between the initial and final γ momenta ~k and ~q, and ∆ = q − k
represents the degree to which the process is non-forward. In contrast to the forward case,
the form factors are now evaluated at different momenta. After performing the summation
over l, the sum (or difference) over all states N gives [215]

(
∑

N=even

±
∑

N=odd

)
F0,N (~q) FN,0(~k) = exp



−(~q ∓ ~k)2

4β2



 ≡ F0,0(|~q ∓ ~k|) . (222)

Note that in the forward limit, ~k = ~q, the sum over all states yields unity, corresponding to
completeness of states, while the difference is equal to the elastic form factor evaluated at a
momentum 2~q.

Integrating the sum of the non-forward response over energy ν, the generalization of the
sum rule in Eq. (170) becomes:

S̃(~q,~k) ≡
∫ +∞

−∞
dν R̃L(ν, ~q,~k,∆2) (223)

= (e21 + e22)F0,0(|~q − ~k|) + 2e1e2F0,0(|~q + ~k|) . (224)

In the Q2 ≫ |∆2| limit the first term dominates, leading to a partonic interpretation of the
sum rule in terms of squares of quark charges weighted by the elastic form factor [215],

S̃(~q,~k) −→ (e21 + e22) F0,0(~∆
2) . (225)
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The emergence of the scaling behavior from duality in this model is due to the mass
degeneracy between multiplets with the same N but different l, which causes a destructive
interference between all but the elastic contribution. The presence of interactions which
break the l-degeneracy within a given N multiplet will in general spoil the exact cancel-
lations and give rise to violations of duality, which would lead to oscillations about the
smooth scaling law behavior at high energies [57]. The observation of such oscillations may
therefore indicate mass splittings within a given N multiplet, in contrast to the case of
splittings between multiplets of different N for the case of inclusive structure functions dis-
cussed in Sec. VB2. Such patterns of oscillations have in fact been found in exclusive pion
photoproduction reactions, γp→ π+n, which we discuss in the next section.

4. Exclusive Hard Pion Photoproduction

While DVCS measures charge-squared weighted combinations of GPDs, in analogy with
charge-squared weighted PDFs in DIS, replacing the final state γ with mesons enables one
to probe different combinations of GPDs. The process of exclusive hard meson production
thus shares many similarities with DVCS, or with wide-angle Compton scattering for real
photons. In this section we focus our attention on the case of hard pion production with
real photons.

Implications of the inclusive–exclusive correspondence principle for exclusive photopro-
duction of pions at large transverse momentum have been investigated by several authors.
An early study of hard pion production using local duality at threshold was made by Scott
[291], who used the correspondence relation (215) to express the inclusive cross section near
threshold in terms of the exclusive cross section, as for Compton scattering in Eq. (220).

More recently, Eden et al. [162] addressed the question of the applicability of a leading-
twist description of hard pion production and the validity of local duality for the reaction
γp → π+X. Calculating the hard scattering at the quark level in terms of the γq → π+q
subprocess, and replacing the proton structure function by the square of the magnetic form
factor, Eden et al. find in the limit of large s and t [162]

dσ

dt
(γp→ π+n) ≈ 16π2α

α2
s f

2
π

|t| s2
(Gp

M(−t))2 , (226)

where one has assumed s≪ |t|, and that d/u≪ 1 in the x→ 1 limit.
Experimentally, the γp → π+n cross section is found to be proportional to 1/s2 for

|t| <∼ 2 GeV2 [292], in agreement with Eq. (226). However, the absolute cross section at low
s (Eγ

<∼ 7 GeV) is underestimated by the local duality prediction by a factor ∼ 50. At larger
|t| the γp→ π+n cross section falls rapidly with energy, ∼ 1/s6 [292], and one expects that
the duality relation (226) may be more applicable at larger s and |t| (Eγ ∼ 20 GeV) [162].

The γp→ π+n reaction was considered by Afanasev et al. [149] for s ∼ |t|, who studied
duality in the limit of fixed center of mass scattering angle, θcm. Good agreement with
data [292] is observed for the energy dependence at θcm = 90◦. However, Eden et al. [162]
point out that at fixed angle this underestimates the measured cross section by about two
orders of magnitude, due to additional diagrams involving more than a single quark in the
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nucleon which cannot be neglected in this limit. The appropriate limit for duality, and more
generally factorization, to hold in semi-exclusive reaction is the |t| ≪ s limit [293].

As well as requiring an appropriate choice of kinematics, part of the apparent failure of
duality in exclusive reactions also stems from the restriction to a single hadronic state. Du-
ality arises when sufficiently many intermediate hadronic states are summed over, resulting
in cancellations of non-scaling contributions. Certainly in Nature the cancellations are not
exact, however, and give rise to duality violations present at any finite kinematics.

FIG. 73. Energy dependence of the γp→ π+n cross section at θcm = 90◦, from Ref. [294]. The

solid (dashed) curve corresponds to degeneracy breaking for N ≤ 2 (N ≤ 4). The data are from

Refs. [295] (open circles) and [296] (filled circles).

A novel application of duality and duality violation in exclusive π+ photoproduction was
considered recently by Zhao & Close [294], as a possible explanation for some spectacular
oscillations seen in γp → π+n cross sections at θcm = 90◦ [295,296] (see Fig. 73). Using
the simple pedagogical model of two scalar constituents bound by harmonic oscillator forces
from Sec. VB2, Zhao & Close suggest that the oscillations result from the non-degeneracy
of states with the same principal quantum number N for different orbital quantum numbers
l.

For a degenerate spectrum, summation over resonance excitations produces destructive
interference of coherent contributions, giving rise to scaling behavior. In fact, since the
l-odd terms are proportional to cos θcm, only parity-even (and hence N -even) contributions
will be nonzero at θcm = 90◦ [294]. At high energies the large number of overlapping
resonances makes the cancellations, and hence duality, appear locally. At lower energy,
however, where fewer resonances are encountered, the different partial waves will not cancel
locally if the resonances with different N are not degenerate, and one can expect deviations
from the smooth scaling behavior at θcm = 90◦ arising from interference between the non-
local resonances.
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In Fig. 73 the differential cross section s7dσ/dt is plotted as a function of the center
of mass energy

√
s for two scenarios of degeneracy breaking: for N ≤ 2 and for N ≤ 4

states. Sizable oscillations are clearly evident in both cases, which persist to several GeV,
but with decreasing amplitude for larger

√
s. The agreement with the data at low

√
s is

quite remarkable given the simplicity of the model.
If violations of local duality are indeed responsible for the observed oscillations [295,296],

one would expect a specific Q2 dependence for these, in contrast with some of the alternative
proposed explanations in terms of charm thresholds [297], or the interference between short
and long-distance effects [298].

In particular, if a set of resonances is suppressed at large Q2 (as discussed for example
in Sec. VC2), there should be strong Q2 dependence in the oscillations, with neither the
position nor the magnitude displaying any simple periodicity [294]. Furthermore, one can
also expect oscillations arising from violations of duality in other processes, such as vector
meson production. Some of these and other future tests of duality will be discussed in
Sec. VII below.
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VI. QUARK-HADRON DUALITY IN RELATED FIELDS

In the previous sections we have reviewed the experimental status of duality in struc-
ture functions and discussed its theoretical interpretations within various models, and more
formally using the operator product expansion in QCD. To put this discussion in a broader
context, in this section we consider examples of duality observed in areas other than electron
scattering. We review several famous examples, ranging from the prototypical case of dual-
ity in e+e− annihilation into hadrons, and the celebrated application in semileptonic decays
of heavy mesons, to a more recent speculative example of duality in pp̄ annihilation. These
examples will illustrate many features in common with Bloom-Gilman duality in electron
scattering, suggesting a common origin of these phenomena in QCD. To begin with, we
first review one of the most extensive theoretical applications of duality in hadronic physics,
namely that in QCD sum rules.

A. QCD Sum Rules

The method of QCD sum rules [299–301] has enjoyed tremendous success in the com-
putation of a wide range of hadronic ground state properties, as well as form factors [302]
and (moments of) structure functions [303] (for reviews see Refs. [304–306]). The basic
premise behind QCD sum rules is that physical quantities are obtained by matching results
calculated in terms of quark-gluon degrees of freedom, using asymptotic freedom, with those
calculated in terms of hadrons via dispersion relations. The partonic side of the sum rule
is often referred to as the “theoretical” part, while the hadronic side is referred to as the
“phenomenological” part. At the heart of the sum rule method lies quark-hadron duality
— the ability to relate low-energy observables to their asymptotic high-energy behavior. In-
deed, as Shifman, Vainshtein and Zakharov remark in their classic paper [300], “QCD sum
rules can be considered as a justification and refinement of the duality relations” between
resonance and continuum cross sections.

Calculation of the partonic side of the sum rule relations (as in deep inelastic scatter-
ing) relies on factorization of the short-distance amplitudes from the long-distrance ampli-
tudes, with the latter parameterized in terms of quark and gluon vacuum condensates. The
hadronic (phenomenological) side, on the other hand, requires an accurate representation of
the hadronic spectrum. In cases where the ground state is dominant, the properties of the
ground state itself can be extracted, in a way reminiscent of the local duality discussed in
Sec. VC1.

In the following we consider two pedagogical examples which graphically illustrate the
interplay between confinement and asymptotic freedom implicit in duality. While at present
the accuracy of quark-hadron duality cannot be rigorously determined in QCD, the QCD
sum rule method is quite general, and many features can be explored by considering simple
models for which exact solutions are known. One can then try to draw lessons from the
simple models to more realistic cases, which can help us to understand the origin and
phenomenological consequences of duality in QCD. In fact, one doesn’t even need to consider
quantum field theory — the essential elements of duality can already be seen at work in
quantum mechanics. We shall review one such example in the next section: the quantum
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mechanical harmonic oscillator. Following this we describe the extension of the sum rule
method to field theory, by applying the operator product expansion to the ρ meson.

1. Quantum Mechanics

One of the simplest examples of an exactly soluble model which illustrates the basic
elements of duality is the quantum mechanical harmonic oscillator [301]. This model in fact
provides an ideal laboratory to address the question of whether asymptotic sum rules can
be obtained even if they are saturated by a single resonance. Here we use the simplified
case of a 2+1 dimensional harmonic oscillator, as discussed by Radyushkin [306], which
avoids the unnecessary algebraic complications of the 3+1 dimensional case. (The latter
was considered by Vainshtein et al. [301] — see also Refs. [307–309].) Here we shall follow
closely the notations of Refs. [301,306].

In quantum mechanics the time-dependent Green’s function for the propagation of a
particle in an external field from a point (~0, 0) to the point (~x, t) is given by

G(~x, t) =
∞∑

n=0

ψ∗
n(~0) ψn(~x) eiEnt , (227)

where ψn(~x) is the eigenfunction describing the particle in the n-th excited state with energy
En. The time evolution of the Green’s function turns out to be easier to study in imaginary
time. Performing a Wick rotation to Euclidean space, t→ iτ , and taking ~x = 0, the Green’s
function then becomes [306]

G(~0, τ) =
∞∑

n=0

∣∣∣ψn(~0)
∣∣∣
2
e−Enτ . (228)

One can show that for small Euclidean time intervals, τ → 0, the interacting Green’s function
approaches the free Green’s function, as it would for the case of asymptotic freedom (see
also Ref. [310]). In order to make the analogy with the OPE more apparent, it will be more
convenient to express the Green’s function in terms of the conjugate parameter ǫ ≡ 1/τ ,
and to define the function

M(ǫ) ≡ G(~0, 1/ǫ) =
∞∑

n=0

|ψn(0)|2 e−En/ǫ . (229)

For a 2+1 dimensional harmonic oscillator potential, V = 1
2
mω2r2, the energy levels are

given by

En = (2n+ 1) ω , (230)

where ω is the oscillator frequency, m is the particle mass, and the wave function at the
origin, |ψ0(~0)|2 = mω/π, is independent of the excitation level n. Performing the sum over
n, the function M(ǫ) can be written as

M(ǫ) =
1

2
mω

∞∑

n=0

e−En/ǫ =
m ω

2π sinhωτ
. (231)
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In the ǫ→ ∞ limit, M(ǫ) collapses to its free limit,

M0(ǫ) =
m ǫ

2π
. (232)

Note that even though each term in the series in Eq. (231) depends on ω, the total sum in
the asymptotic limit is independent of ω. This can be compared with the scale independence
of the DIS structure function, when summed over Q2-dependent resonance form factors. In
fact, expanding M(ǫ) in Eq. (231) for large ǫ in powers of 1/ǫ, one has [306]

M(ǫ) = M0(ǫ)

(
1 − 1

6

ω2

ǫ2
+

7

360

ω4

ǫ4
− 31

15120

ω6

ǫ6
+ · · ·

)
, (233)

where the 1/ǫ2 corrections resemble the 1/Q2 corrections in the twist expansion of Sec. VA1.
To demonstrate how the sum over bound state wave functions coincides with free states,

one can use the spectral representation for the Green’s function,

M(ǫ) → 1

π

∫ ∞

0
dE ρ(E) e−E/ǫ , (234)

where the harmonic oscillator spectral function,

ρ(E) ≡ mω
∞∑

n=0

δ(E −En) , (235)

is a superposition of δ-functions in the energy E, with the harmonic oscillator energy levels
En. The asymptotic function M0(ǫ) can also be expressed in terms of an analogous free
spectral function,

ρ0(E) =
1

2
m θ(E) , (236)

as illustrated in Fig. 74. Clearly the free and interacting spectral densities cannot be more
orthogonal to each other! However, by integrating the latter between the mid-points of
adjacent δ-functions, one finds an exact local duality between the free and interacting spectral
densities,

∫ 2(n+1)ω

2nω
dE (ρ(E) − ρ0(E)) = 0 , ∀ n ≥ 0 . (237)

In addition to the lowest moment, a similar duality holds also for the first moment of ρ,

∫ 2(n+1)ω

2nω
dE E (ρ(E) − ρ0(E)) = 0 . (238)

Generalizing this to the exponential-weighted densities in M(ǫ), one has

∫ ∞

0
dE e−E/ǫ (ρ(E) − ρ0(E)) =

∞∑

n=1

cn

(
1

ǫ

)n

, (239)
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where cn are coefficients, and once again the power corrections 1/ǫ are reminiscent of the
twist expansion in QCD. Note that since there is no O(1) term in the difference, one also
has an exact global duality in the ǫ→ ∞ limit,

∫ ∞

0
dE (ρ(E) − ρ0(E)) = 0 . (240)

Similar results have been obtained for potentials other than the harmonic oscillator, such as
the infinite spherical well, or a linear potential — in fact, any potential which is nonsingular
at the origin will satisfy a relation similar to Eq. (240) [301].

Eρ(   )

E3ω

th

5ω

m
2

E

ω

FIG. 74. Spectral density ρ(E) as a function of energy for the 2+1 dimensional harmonic

oscillator. The harmonic oscillator levels (δ-functions) are indicated by solid vertical lines, and the

free particle level is indicated by the dashed horizontal line at m/2. The approximate location of

the continuum threshold Eth is indicated by the arrow.

The utility of the sum rule method lies in the possibility of extracting properties of the
ground state ψ0 from the asymptotic sum. Both the ground state energy E0 and wave
function ψ0 are obtained by matching the n ≥ 1 contributions to M(ǫ) in (231) with the
free result above some threshold, E > Eth. This is achieved by replacing the lower limit
of integration in Eq. (234) by Eth, and the interacting density ρ by ρ0, which leads to the
relation

∣∣∣ψ0(~0)
∣∣∣
2
e−E0/ǫ ≈ mǫ

2π

(
1 − e−Eth/ǫ − 1

6

ω2

ǫ2
+

7

360

ω4

ǫ4
+ · · ·

)
. (241)

Differentiating both sides of (241) with respect to 1/ǫ then enables one to solve for E0 in
terms of Eth and ǫ, and compare with the exact expression (230). In the ǫ→ ∞ limit (which
corresponds to asymptotic freedom), one obtains exact duality for the ground state alone,

148



∣∣∣ψ0(~0)
∣∣∣
2 → mEth

2π
, (242)

where the corresponding “duality interval” in this limit is given by Eth → 2ω. At finite
ǫ the accuracy of the sum rule estimate depends on the order at which one truncates the
series. Truncating at order ω3, Radyushkin [306] finds the minimum dependence on ǫ for
E0 = 0.95 ω, which corresponds to an energy threshold Eth = 1.75 ω. For these values, the
wave function |ψ0(~0)|2 ≈ 0.9mω/π. Up to this order, one therefore finds that the parameters
describing the ground state can be described with ∼ 10% accuracy. The main source of error
is associated with the somewhat crude treatment of the spectral density for the n ≥ 1 states.
In contrast, while the lowest state is narrow in Nature, the higher excited states are usually
rather broad, so that approximating these by free quark states may lead to even better
convergence. The convergence of the series may also be improved by performing a Borel
summation, as discussed in the next section.

2. Duality for the ρ Meson

In field theory the Green’s function G(~x, t) generalizes to a current-current correlator,
Π(q2), defined in the momentum representation as the vacuum expectation value of the
time-ordered product of currents Jµ = ψ̄(x)γµψ(x),

(qµqν − q2gµν) Π(q2) = i
∫
d4x eiq·x 〈0|T (Jµ(x)Jν(0))|0〉 , (243)

where ψ(x) is the quark field. To illustrate the practical application of the QCD sum rule
method we shall determine the properties of the ground state in the spin-1, isospin-1 channel,
corresponding to the ρ meson.

In analogy with the twist expansion in DIS, at large q2 the correlator Π(q2) can be
expanded using the OPE in terms of expectation values of local operators Ô multiplied by
hard Wilson coefficients Cn(q

2),

Π(q2) =
∑

n

Cn(q
2) 〈0|Ô|0〉 . (244)

For space-like momenta Q2 ≡ −q2 > 0 the correlator satisfies a standard dispersion relation,

Π(Q2) = Π(0) − Q2

12π2

∫ ∞

0
ds

R(s)

s (s+Q2)
, (245)

where

R(s) =
σh(e

+e− → hadrons)

σ(e+e− → µ+µ−)
(246)

is the ratio of e+e− annihilation cross sections into hadrons (in the I = 1 channel) to that
into muons, at a value s of the total center of mass energy squared of the e+e− pair (see also
Sec. VIB below). The elementary muon cross section is given by
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σ(e+e− → µ+µ−) =
4π α2

3 s
, (247)

where α is the electromagnetic fine structure constant.
As mentioned in the preceding section, the convergence properties of the sum rule can

be improved by making a Borel transformation of both the OPE (partonic) and dispersion
(hadronic) sides of the sum rule, as defined by the operation

B̂ f(Q2) → f̃(M2) , (248)

where

B̂ = lim
Q2,n→∞

M2 fixed

1

(n− 1)!
(Q2)n

(
− d

dQ2

)n

. (249)

Here M2 ≡ Q2/n is the square of the Borel mass, which sets the scale at which the long- and
short-distance expansions are matched. Application of the Borel transform to the correlator
Π(Q2) leads to the sum rule [299]

∫ ∞

0
ds e−s/M2

R(s) =
3

2
M2

{
1 +

αs(M)

π
− 2π2f 2

πm
2
π

M4
+

π

3M4
〈αsG ·G〉 − 448π3

81M6
αs〈q̄q〉2

}
,

(250)

where the coefficients of the 1/M power corrections are given in terms of quark and gluon
vacuum condensates, 〈q̄q〉 ≡ 〈0|q̄q|0〉 and 〈αsG · G〉 ≡ 〈0|αsG

a
µνG

a,µν |0〉, with f 2
π m2

π =
−2 〈muūu + mdd̄d〉. Note the absence of O(1/M2) corrections on the right hand side of
Eq. (250). The O(1) term in Eq. (250) corresponds to the free quark result for R(s),

R0(s) =
3

2

(
1 +

αs(s)

π

)
, (251)

evaluated to order αs. The famous factor of 3/2 in R0(s) arises from the number of quark
colors (3), and the square of the isovector quark charge, (eI=1

q )2 = ((eu − ed)/2)2, multiplied
by 2 (for u and d quarks). Just as in the DIS case, the 1/M power corrections in the
sum rule (250) parameterize the effects of confinement, and control the behavior of the
resonance contributions. Taking the M2 → ∞ limit, the exponent e−s/M2 → 1, and the
power corrections vanish, leaving an exact duality between the hadronic contributions and
the free result,

∫ ∞

0
ds (R(s) −R0(s)) → 0 . (252)

Using phenomenological values for the quark and gluon condensates, 〈muūu + mdd̄d〉 ≈
–(0.114 GeV)4, |〈q̄q〉| ≈ (0.25 GeV)3, and 〈αsG ·G〉 ≈ (0.44 GeV)4, the sum rule (250) gives

∫ ∞

0
ds e−s/M2

R(s) ≈ 3

2
M2



1 +

αs(M)

π
+ 0.1

(
0.6 GeV2

M2

)2

− 0.14

(
0.6 GeV2

M2

)3


 . (253)
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Choosing the Borel mass to be equal to the ρ mass, M2 = m2
ρ ≈ 0.6 GeV2, the power

corrections appear to be relatively small compared with the free quark term, even though
for such a value of M2 the (physical) cross section integral is dominated by a single (ρ)
resonance!

In the narrow resonance approximation the ρ contribution is given by

R(ρ)(s) =
12π2m2

ρ

g2
ρ

δ(s−m2
ρ) , (254)

where the coupling constant gρ is defined in terms of the matrix element of the vector current,
〈0|Jµ|ρ〉 = ǫµ(m2

ρ/gρ). One can attempt therefore to extract the ρ properties by neglecting
both the power corrections to the asymptotic result R0(s), and the higher-mass resonances
above the ρ pole,

∫ ∞

0
ds e−s/m2

ρ R(ρ)(s) ≈ 12π2m2
ρ

e g2
ρ

. (255)

This then leads to a remarkable prediction for the ρ coupling constant in terms of the
fundamental constants e and π [300],

g2
ρ

4π
≈ 2π

e
≈ 2.3 , (256)

which is very close to the phenomenological value 2.36±0.18. Therefore asymptotic freedom
severely constrains the properties of a single resonance! Contrast this with the extraction of
the nucleon elastic form factors from DIS structure functions at x ∼ 1 using local duality,
in Sec. VC1.

An improvement on the simple model with the single resonance can be made by adopting
the “pole + continuum” ansatz for the spectral density, illustrated in Fig. 75, in which the
hadronic ratio above the continuum threshold s > s0 is assumed to be reliably evaluated in
terms of the free quark ratio,

R(s) = R(ρ)(s) + R0(s) θ(s− s0) . (257)

This in fact amounts to a statement of duality,
∫ s0

0
ds R(s) =

∫ s0

0
ds R0(s) , (258)

of which Eq. (255) is a particular example. Adopting a similar strategy as for the harmonic
oscillator study in Sec. VIA1, the coupling constant, ρ mass, and threshold s0 can be
extracted from the sum rule by identifying the region where the results are most stable with
respect to variation of s0 and M2. In this manner one obtains m2

ρ ≈ 0.6 GeV2, g2
ρ/4π ≈ 2.4,

with s0 ≈ 1.5 GeV2, which is within the anticipated ∼ 10% accuracy of the sum rule method
[300,306].

Despite the simplicity of the model for the spectral density adopted, this example il-
lustrates the power of QCD sum rules and the effectiveness of the quark-hadron duality
assumption underpinning this method. In the next section we discuss more practical appli-
cations of duality in e+e− annihilation by considering more realistic models.
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FIG. 75. Simple model of the spectral density for the ratio R(s) of e+e− annihilation cross

sections in the I = 1 channel for hadrons to muons. The pole contribution is at s = m2
ρ and the

continuum begins at s = s0. The free quark result, R(s) = 3/2, at s → ∞ is indicated by the

dashed extension.

B. Electron-Positron Annihilation

One of the classic manifestations of quark-hadron duality is in inclusive e+e− annihilation
into hadrons. The annihilation reaction e+e− → X proceeds through a virtual photon
coupling to a qq̄ pair, which subsequently hadronizes into physical hadrons X, e+e− →
qq̄ → X. At low energies the qq̄ pair forms a series of bound states; at higher energies the qq̄
states appear as broad resonances which merge into a smooth continuum. The continuum
cross section is well described by the production of a “free” qq̄ pair followed by fragmentation
into the observed hadrons. Duality in e+e− annihilation relates appropriate averages of the
highly structured physical hadronic cross section, σh, to the smooth cross section for quark
pair production, σqq̄, which can be calculated perturbatively,

〈σh〉 ≈ 〈σqq̄〉 , (259)

where the brackets 〈· · ·〉 denote averaging. The duality relation (259), illustrated schemat-
ically in Fig. 76, has been used extensively in many applications, such as the extraction of
quark masses from data, prediction of leptonic widths, and fundamental tests of QCD.

In Sec. VIB 2 we consider an illustration of duality in e+e− annihilation in hadronic, pre-
QCD language, in terms of the vector meson dominance model. More formal discussions
of duality, in terms of quark degrees of freedom, are presented in Sec. VIB 3 for potential
models, both nonrelativistically and relativistically, and examples of duality violating cor-
rections are given. The appearance of duality in the exactly soluble case of QCD in 1+1
dimensions with a large number of colors is described in Sec. VIB 4. Before proceeding to
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FIG. 76. Quark-hadron duality in e+e− annihilation into hadrons: the sum over free qq̄ pairs

(left) is dual to the average of hadrons h (right).

the theoretical descriptions of e+e− duality, however, we firstly consider the important issue
of smearing, and how to relate the quark level calculation with that at the hadronic level.
This will illuminate the resonance averaging which was inherent in the observation of duality
in inclusive electron–nucleon scattering.

1. Smearing Methods

While the production of qq̄ pairs in e+e− annihilation can be calculated in QCD using
perturbation theory, a direct comparison with the measured hadronic cross sections is of
course more problematic. Such a comparison can be made at large s, where the conversion
of qq̄ pairs into hadrons produces a smooth dependence on s. However, just as in inclusive
electron scattering, at low s the cross section is dominated by resonances and multihadron
thresholds, giving a rich structure whose description is far beyond the scope of perturbative
QCD.

As was found for Bloom-Gilman duality in inclusive DIS, one can nevertheless try to
relate the calculated qq̄ cross section to the observed hadronic cross section at low s by
suitably averaging or smearing the hadronic cross section. Some examples of smearing
techniques were previously encountered in Sec. V, where averages of resonances were found
to closely resemble scaling structure functions. Here we consider several specific methods of
smearing which, although applied to e+e− annihilation, can be generalized to other processes,
including deep inelastic structure functions.

One method of smoothing the e+e− ratio R(s) considered by Adler [311] and De Rújula &
Georgi [312] involved extrapolating the experimental data from the timelike to the spacelike
regions via dispersion relations. Comparisons with perturbative QCD predictions could then
be made for the extrapolated quantity

D(Q2) ≡ Q2
∫ ∞

4m2
π

ds
R(s)

(s+Q2)2
=

3π

α
Q2 dΠ(s)

ds

∣∣∣∣∣
s=−Q2

, Q2 < 0 , (260)

where Π(s) is the vacuum polarization amplitude. Clearly the integration over s has the
effect of smearing any structures in R, which results in a smoothed quantity D(Q2). The
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disadvantage of this technique is that one must make assumptions about the behavior of
R at high energies, outside the measured region, in order to make use of the dispersion
relations.

Another technique for smearing the ratio R directly in the timelike region was proposed
by Poggio, Quinn & Weinberg [313], borrowing ideas from the smoothing of neutron cross
sections in nuclear reactions [314]. Defining the smeared ratio

R̄(s,∆) =
∆

π

∫ ∞

4m2
π

ds′
R(s′)

(s′ − s)2 + ∆2
, (261)

where ∆ is a phenomenological parameter, the integral averages out both the quark-gluon
thresholds in the theoretical cross sections and the hadronic thresholds and resonances in
perturbation theory. Poggio et al. [313] argue that as long as ∆ is sufficiently large, R̄(s,∆)
can be calculated with some number N∆ of terms in perturbation theory. On the other
hand, keeping ∆ as small as possible ensures that maximal information can be extracted
from the data. Since N∆ decreases with decreasing ∆, making the averaging too fine grained
may lead to N∆ being as small as 1. To order αs, and including only contributions from
quarks, R(s) is given in perturbative QCD by

R0(s) =
3

2

∑

q

e2q vq (3 − v2
q )
(
1 +

4

3
αs f(vq)

)
, (262)

where vq =
√

1 − 4m2
q/s and

f(vq) =
π

2vq
− 3 + vq

4

(
π

2
− 3

4π

)
. (263)

In the limit s≫ m2
q one has vq → 1, and the ratio

R0(s) → 3
∑

q

e2q

(
1 +

αs(s)

π

)
. (264)

In this limit the right hand side of Eq. (264) reduces to the expression in Eq. (251) for the
vector-isovector channel.

A different smearing method, using the lowest moment of R, was proposed by Shankar
[315] and Greco et al. [316], in which the experimental ratio was smeared by integrating over
s up to some maximum value s̄ [316],

M(s̄) =
∫ s̄

4m2
π

ds R(s) . (265)

While the ratio R itself displays prominent resonance structures at low s, as illustrated
in Fig. 77 (a), these structures have almost disappeared in the moment M(s̄) shown in
Fig. 77 (b). Apart from shoulders in M(s̄) corresponding to thresholds of the prominent
resonances, the s̄ dependence is very smooth.

The inset in Fig. 77 (b) shows in more detail M(s̄) in the low-s̄ region, where the bumps
at s̄ ∼ 1 GeV2 correspond to the ρ, ω and φ meson thresholds. Extrapolating the smooth
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curve at large s̄ down to zero, one sees that the extrapolated curve would roughly bisect
the structures associated with the low-mass resonances. The implication of this is that the
value of R extrapolated from large s approximately coincides with the value averaged over
the ρ, ω and φ resonances. This scenario exactly parallels the low-s (or low-W ) structures
in inclusive electron–nucleon structure functions, which are averaged by the high-s scaling
function extrapolated into the resonance region — see Sec. IV. The approximate equality
of the structure functions integrated over resonances with those integrated over the smooth
deep inelastic continuum is also reminiscent of the leading-twist dominance of moments of
structure functions, even when these are dominated by resonance contributions at low Q2.
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FIG. 77. (a) Ratio R versus s (in GeV2). The shaded bands represent experimental uncer-

tainties at large s. (b) Zeroth moment M(s̄) as a function of s̄. The inset highlights the small-s̄

(< 10 GeV2) region. (Adapted from Ref. [316].)

2. Vector Meson Dominance

Duality in e+e− annihilation can be studied more quantitatively within dynamical mod-
els. Early, pre-QCD attempts to link the behavior of the e+e− → X cross section at low
energies with that at high energies were made using the phenomenological vector meson
dominance model and its generalizations. Here at low s the photon interacts through the
standard (ρ, ω, φ) vector mesons, while at high energies it couples to a continuum of hadronic
vector states with a linear mass spectrum. The 1/s behavior of the total hadronic cross sec-
tion at large s arises from an infinite series of vector meson peaks, which add together to
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build up a smooth scaling continuum in much the same way as the scaling curve in DIS is
obtained from a sum over an infinite series of s-channel resonances (see also Sec. VB2).

Quantitatively, the total cross section σh corresponding to the coupling of the photon to
vector mesons can be written as [317]

σh(s) = σµ+µ−(s)
∑

n

12π

f 2
n

m3
n Γn

(s−m2
n)2 +m2

nΓ2
n

, (266)

where fn gives the strength of the coupling to a vector meson of mass mn and width Γn, and
σµ+µ− is the µ+µ− production cross section, Eq. (247). The sum in Eq. (266) must include
an infinite number of vector meson states if σh(s) ∼ 1/s on average. Furthermore, the 1/s
behavior imposes a constraint between the density of meson states ρn per unit mass squared
interval and the coupling fn,

ρn ∝ f 2
n

m2
n

, (267)

for all states n. For a linear mass spectrum,

m2
n = m2

ρ (1 + a n) , (268)

where a = 2 corresponds to a pure Veneziano-like mass spectrum, one finds asymptotically
the remarkable relation [317,318]

R(s) = lim
s→∞

σh(s)

σµ+µ−(s)
=

8π2

f 2
ρ

. (269)

Namely, at asymptotically large s the ratio is determined entirely by the coupling of a photon
to the ground state ρ. For fρ ∼ 6 [317], numerically the ratio is ∼ 2 (cf. the asymptotic
QCD sum rule result in Eq. (251)).

Sakurai [317] further developed the relation between the hadronic cross section and its
asymptotic limit σ0(s) by formulating a “finite energy sum rule” version of the duality
relation (also known as “Q2 duality”),

∫ s̄

4m2
π

ds s σh(s) ≈
∫ s̄

s0

ds s σ0(s) , (270)

where σ0 is given by the imaginary part of the vacuum polarization amplitude Π0(s),

σ0(s) =
4πα

s
ℑm Π0(s) , (271)

and s0 denotes the onset of the absorptive cut of Π0(s) in the s-plane. This relation provides
a vivid analogy with dual models of the strong interactions: the vector meson contributions
on the left hand side of Eq. (270) at low energies average to the asymptotic cross section
extrapolated down to low s. One can further speculate that this duality holds locally and
that the finite energy sum rule is satisfied even if the maximum value of s, s̄, is chosen not
far above the φ meson mass.

While phenomenologically the “Q2 duality” appears to be reasonably well satisfied, the
formulation of the model entirely in terms of hadronic degrees of freedom leaves the way
open for a deeper understanding of the duality phenomenon at the quark level. We turn to
this in the following.
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3. Potential Models

The duality between the e+e− hadronic cross section at low energy and its high-energy
behavior can also be described microscopically in terms of the underlying quark degrees of
freedom. Here we consider several models in which this duality can be made explicit, firstly
by considering the nonrelativistic limit, which should be valid for heavy quarks, and then
generalizing to the relativistic case.

For nonrelativistic, free quarks the e+e− → qq̄ cross section (for one quark flavor) is
given by [319]

σnr
qq̄ =

6πα2

s
e2q v

nr |ψnr
E (0)|2 , (272)

where ψnr
E (0) is the free qq̄ wave function for energy E =

√
s − 2mq, and vnr =

√
E/mq

is the nonrelativistic velocity. For non-interacting particles, with conventional plane-wave
normalization, one has |ψnr

E (0)|2 = 1.
The nonrelativistic cross section for producing qq̄ bound states (in some confining po-

tential), on the other hand, is given by [319,320]

σnr
bound =

24π2α2

m2
q s

e2q
∑

n

|ψnr
n (0)|2 δ(E −En) , (273)

where n is the radial quantum number of the bound state with excitation energy En, and
ψnr

n (0) is the bound state wave function at the origin. For non-singular potentials the wave
function ψnr

n (0) is related to the density of states, ρnr
n ≡ dn/dEn, according to [321–323]

|ψnr
n (0)|2 =

m2
q

4π2

vnr
n

ρnr
n

, (274)

where vnr
n =

√
(En − V (0))/mq is the velocity of a free quark with energy (En − V (0))/2.

For duality to exist the averaged free quark cross section should be equal to the bound state
cross section smoothed over an appropriate energy interval (cf. Eq. (259)),

〈σnr
bound〉 ≈ 〈σnr

qq̄〉 . (275)

The energy averaging over the δ-function in Eq. (273) can be implemented for instance by
replacing δ(E − En) by smooth functions (e.g., Gaussians) with a finite width ∆ [324].

Early work by Krammer & Leal-Ferreira [321] and Quigg & Rosner [322] showed that
the duality relation (275) indeed emerges from a nonrelativistic (vnr ≪ 1) potential model in
the Wentzel-Kramers-Brillouin (WKB) approximation. Bell & Pasupathy [323] generalized
the results to higher partial waves, using the Thomas-Fermi approximation for the density
of a Fermi gas with one particle per level in a non-singular potential. Later Durand &
Durand [319] showed that the energy-averaged cross sections in Eq. (275) can be related
by a Fourier transform to the short-time behavior of the quark propagator. For a given
confining potential, the short-time propagator is then related to the free propagator, with
calculable corrections.
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Bhaduri & Pasupathy [320] used a different smoothing procedure, in which the energy-
averaged bound state cross section is related to the unsmeared free quark cross section. For
a harmonic oscillator potential, V (r) = mω2r2/2, where m = mq/2 is the reduced mass of
the qq̄ system, the averaged bound state cross section is expanded in powers of h̄ to yield
[320]

〈σnr
bound〉 = σnr

qq̄




1 +
1

16

(
h̄ω

E

)2

+ O(h̄4)




 . (276)

To lowest order the averaged bound state cross section is manifestly equal to the free quark
cross section σnr

qq̄ . More generally, for any non-singular potential V (r) one can write [320]

〈σnr
bound〉 = σnr

qq̄

{
1 +

h̄2

8mq

V
′′

(0)

E2
+

5h̄2

32mq

|V ′(0)|2
E3

+ O(h̄4)

}
, (277)

where the correction terms are given by derivatives of V (r) at the origin. One can verify
that for the harmonic oscillator potential this expression reduces to Eq. (276).

While the nonrelativistic duality may be relevant phenomenologically for heavy quarks,
for light quarks one needs to demonstrate that duality is also valid relativistically. A proof
of relativistic duality in e+e− annihilation was given by Durand & Durand [325] in the
framework of the Bethe-Salpeter equation. The relativistic free quark cross section is given
by [323]

σqq̄ =
2πα2

s
e2q vq(3 − v2

q ) θ(s− 4m2
q) , (278)

where vq is the velocity of the quark in the center of mass system (cf. Eq. (262)). The
corresponding relativistic bound state cross section can be written

σbound = 6π2
∑

n

Γn(e+e−)

s
δ(
√
s−Mn) , (279)

where the width Γn(e+e−) is given by [325]

Γn(e
+e−) =

16πα2

M2
n

e2q |ψn(0)|2 (1 − ∆n) , (280)

with ψn(0) the “large” component of the S-state Bethe-Salpeter wave function at zero space-
time quark separation. The term ∆n includes D-state effects and terms arising from the
“small” components of the wave function. For relativistic systems the wave function is
related to the relativistic density of states ρn ≡ dn/dMn (cf. Eq. (274)) via [325]

|ψn(0)|2 ≈ M ′2
n

16π2

v′n
ρn

(1 − ∆′
n) , (281)

where v′n is the relativistic velocity of a free quark with energy M ′
n/2 = (Mn − V (0))/2,

and ∆′
n is a correction for retardation and radiative gluonic effects. Once again the duality

relation (259) is obtained by substituting Eqs. (280) and (281) into the bound state cross
section (279), averaging the result over an appropriate energy range, and replacing the sum
over n by an integral. Relativistic duality can thus be used, for example, to estimate the
radiative corrections to the leptonic widths Γn(e+e−) for bound qq̄ systems by using the
known results for free qq̄ systems.
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4. e+e− Annihilation in the ’t Hooft Model

The duality relations in the potential models discussed above raise the question of
whether and how duality in e+e− annihilation can be shown to arise in QCD. A step towards
answering this question was made by Einhorn [326] and Bradley et al. [327] who considered
e+e− annihilation in QCD in 1+1 dimensions in the Nc → ∞ limit (the ’t Hooft model).

As discussed in Sec. VB1, the ’t Hooft model [199] is a fully soluble theory, which has the
features of confinement and asymptotic freedom. The mass spectrum consists of an infinite
sequence of narrow bound states which become equally spaced in m2

n (n = 0, 1, 2, . . .) at large
n, reminiscent of linear Regge trajectories. In terms of the vacuum polarization amplitude
Π(s), which is related to the cross section as in Eq. (271), the bound state contribution to
the imaginary part of Π(s) is given by [327]

ℑm Π(s) =
∞∑

n=0

g2
n δ(s−m2

n) , (282)

where the couplings gn are zero for n odd (due to parity). Because of the completeness
relation for the qq̄ wave functions, the couplings satisfy

∑
n g

2
n = 1. (Values for the couplings

and masses can be obtained [327] by solving the ’t Hooft equation [199] numerically.) In the
limit s→ ∞ the vacuum polarization amplitude becomes

Π(s) → − 1

πs

∫ ∞

s0

ds ℑm Π(s) = − 1

πs
. (283)

It is instructive to also consider the case of large but finite Nc. Here one may approximate
the sum of δ-functions by a sum of Breit-Wigner resonances [326],

Π(s) ∼
∑

n

g2
n

mn Γn

(s−m2
n)2 +m2

nΓ2
n

, (284)

where Γn is the width of meson n. As Nc → ∞, Γn → O(1/Nc), so that on the resonance
peak the cross section is O(N2

c ), whereas between the resonances (s 6= m2
n) it is O(1).

Asymptotically, the absorptive part of the vacuum polarization amplitude calculated in
terms of free quarks is [327]

ℑm Π0(s) = 2m2
q (s− 4m2

q)
1/2s−3/2 θ(s− 4m2

q) , (285)

which leads to

Π0(s) → − 1

πs

∫ ∞

4m2
q

ds ℑm Π0(s) = − 1

πs
. (286)

Thus the global duality relation,
∫ ∞

s0

ds ℑm Π(s) =
∫ ∞

4m2
q

ds ℑm Π0(s) , (287)

between the absorptive part corresponding to free qq̄ pairs, and that associated with narrow
resonance poles and confined quarks is explicitly verified. Bradley et al. [327] further consider
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the question of whether this equality also holds for more local averages. Comparing the
couplings gn extracted from duality with those calculated explicitly by solving the ’t Hooft
equation numerically, one indeed finds good agreement, which becomes exact in the limit
n→ ∞.

Once again the close analogy with the appearance of duality in structure functions in
the large-Nc limit, as discussed in Sec. VB1, suggests that the phenomenon of duality
between bound state resonances and the free quark continuum is a general feature of strongly
interacting systems. An even more vivid realization of this is seen in the case of weak decays
of heavy mesons, which we turn to in the next section.

C. Heavy Meson Decays

Weak decays of heavy mesons have provided a fertile testing ground for studying the
origin of quark-hadron duality in strong interactions. Here systematic expansions, such as
those based on heavy quark effective theory (HQET) [328–331], can be used to expand decay
rates or widths in inverse powers of the heavy quark mass, 1/mQ. In the heavy quark limit,
mQ → ∞, duality has indeed been shown to be exact, even down to zero recoil energy.
Even though the quarks are heavy and move with small momentum, there is typically a
large energy release and a correspondingly large number of final states that contribute to
the total width. As we have seen in the case of Bloom-Gilman duality in Section V, this is
one of the necessary conditions needed to ensure the emergence of duality.

One of the vital practical applications of duality in heavy quark decays is the determi-
nation of the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements Vcb and Vub. A major
source of uncertainty in their extraction is the deviations from duality expected at higher
orders in the 1/mQ expansion. A better understanding of duality would also have clear
implications for the identification of physics beyond the Standard Model.

By examining the mechanisms behind duality in heavy meson decays, we shall try to gain
insight into the mechanisms underlying Bloom-Gilman duality. In this section we consider
both semileptonic and nonleptonic decays of heavy hadrons. More extensive accounts of
heavy meson decays can be found in the recent reviews in Refs. [332–335]. Before discussing
the phenomenology of duality and its violations in semileptonic and nonleptonic heavy meson
decays, it will be useful to consider a simple pedagogical example which illustrates the
essential physics of duality in heavy quark systems. This will allow us to compare and
contrast this with Bloom-Gilman duality.

1. Duality in Heavy Quark Systems: a Pedagogical Example

Our discussion follows closely that of Isgur et al. [197], who considered a simple toy
model in which a heavy quark Q bound to a light antiquark q̄ decays to a heavy quark
Q′ after emitting a scalar particle φ, (Qq̄)0 → (Q′q̄)n + φ. The subscript n denotes the
possible excitations of the final state heavy meson that are allowed kinematically. At the
free quark level the decay Q → Q′ + φ produces the heavy Q′ quark with recoil velocity ~v,
with the φ emitted with kinetic energy Tfree. At the hadronic level, in the narrow resonance
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approximation, the φ will emerge with any of the sharp kinetic energies allowed by the strong
interaction spectra of these two mesonic systems.

If M(Qq̄)n
and M(Q′q̄)n

are the masses of the heavy-light bound states of (Qq̄) and (Q′q̄),
respectively, then in the heavy quark limit M(Qq̄)n

−M(Q′q̄)n
≃ mQ − mQ′, and the mass

difference between the heavy meson and heavy quark can be neglected, M(Qq̄)n
≃ mQ, and

M(Q′ q̄)n
≃ mQ′. In this limit the hadronic spectral lines cluster around Tfree, and as mQ → ∞

they indeed coincide with Tfree exactly. Since for mQ, m
′
Q → ∞ the decay proceeds as though

the quarks Q andQ′ were free, the sum of the strengths of the spectral lines clustering around
Tfree is equal to the free quark strength, ensuring exact duality in this limit [197].

One can now proceed to unravel this duality to understand how the required “conspiracy”
of spectral line strengths arises physically. Because the recoiling heavy quark Q′ carries off a
negligible kinetic energy, but a large momentum, its recoil velocity ~v is only slightly changed
by the strong interaction. In the rest frame of the recoiling meson, this configuration requires
that the two constituents have a relative momentum ~q which increases with ~v. For ~v → 0
only the ground state process (Qq̄)0 → (Q′q̄)0 + φ is allowed. Since the masses and matrix
elements for the transitions (Qq̄)0 → (Q′q̄)0 + φ and Q→ Q′ + φ are identical, the hadronic
and quark spectral lines and strengths are also identical and duality is valid at ~q 2 = 0.

For nonzero ~v (and therefore ~q), the elastic form factor decreases from unity, so its
spectral line carries less strength. However, since ~q is nonzero, excited states (Q′q̄)n can now
be created, with a strength which exactly compensates for the loss of elastic rate. The excited
state spectral lines also coincide with Tfree and duality is once again exact. Regardless of
how large ~q 2 becomes, all of the excited states produce spectral lines at Tfree with strengths
that sum to that of the free quark spectral line [197,336,337].

For finite quark masses duality violation occurs, although this is formally suppressed by
two powers of 1/mQ [330,332,334] (see Sec. VIC2 below). In this case the spectral lines are
still clustered around Tfree, but no longer coincide exactly with it. Although the spectral line
strengths differ from those of the heavy quark limit, they do so in a way which compensates
for the duality violating phase space effects from the spread of spectral lines around Tfree.
In addition, because mQ −mQ′ is now finite, some of the high mass resonances required for
exact duality are kinematically forbidden, which also leads to duality violation [197].

From this discussion it is clear that the strong interaction dynamics of heavy meson
decays has a number of similarities to that of electron scattering. Essentially the same
model was used in Sec.VB to describe scattering from a heavy-light (Qq̄) bound state,
and the emergence of a scaling function from the (Qq̄)0 → (Q′q̄)n transitions. The crucial
point is that the system must in each case respond to a relative momentum kick ~q. An
important difference, however, is that in a decay to a fixed mass φ only a single magnitude
~q 2 is produced at the quark level, while in electron scattering a large range of ~q 2 and ν is
accessed. This pedagogical example should serve to remind us that even though the physical
origin of duality may be similar, exactly how it manifests itself must of course depend on
the specific process at hand.
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2. Semileptonic Weak Decays

Having illustrated the essential workings of duality in heavy meson decays in a simple
toy model, we now examine the more realistic case of duality in semileptonic weak decays
of heavy mesons. Historically, the exact duality between semileptonic decay rates of heavy
mesons calculated at the quark and hadronic levels was first pointed out by Voloshin &
Shifman [338]. In the extreme nonrelativistic limit, one assumes that the initial (Q) and
final (Q′) quarks are heavy, and satisfy the relation

mQ +mQ′ ≫ mQ −mQ′ ≫ ΛQCD , (288)

where mQ and mQ′ are the respective heavy quark masses. This is usually referred to as the
“small velocity” or Shifman-Voloshin (SV) limit. In the rest frame of the heavy quark Q,
the kinetic energy of the quark Q′ produced in the reaction

Q→ Q′ l ν̄l (289)

will be small compared with its mass, but large compared with ΛQCD. The semileptonic
decay rate for the process (289) calculated at the quark level is given by [338]

Γq =
G2

F δm5

15π2
|VQQ′|2 , (290)

where GF is the Fermi decay constant, VQQ′ is the Q → Q′ CKM matrix element, and
δm = mQ − mQ′. The mass difference between the heavy quark and the corresponding
heavy-light meson M(Qq̄), where q̄ is a light antiquark, is negligible in the SV limit, so that
δm = M(Qq̄) −M(Q′ q̄).

For sufficiently large quark masses a duality arises between the partonic rate Γq and the
rate Γh calculated at the hadronic level involving a sum over a set of hadronic final states
containing Q′. The remarkable feature of the SV limit is that the rate Γh for the hadronic
decay

(Qq̄) → XQ′ l ν̄l (291)

is saturated by just two exclusive channels, XQ′ = P and V , corresponding to pseudoscalar
and vector states, respectively. In particular, the rates for the individual P and V channels
in the SV limit are [338]

ΓP → G2
F δm5

60π2
|VQQ′|2 , (292)

ΓV → G2
F δm5

20π2
|VQQ′|2 , (293)

so that the total hadronic rate is exactly dual to the free quark rate,

Γh = ΓP + ΓV ↔ Γq . (294)

The physical situation where this duality is realized most precisely is in the semileptonic
decay of B to D and D∗ mesons, where the measured hadronic rates are used to extract
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the Vcb matrix element. In Fig. 78 we show a sketch of the B → Xc l ν̄l decay width as a
function of the squared mass M2

Xc
of the final state charmed meson Xc [339]. The known

B → D(∗) spectrum is illustrated by the narrow resonance lines, while the inclusive quark
rate b→ c l ν̄l is shown by the continuous curve. Duality is realized by integrating over the
mass spectrum MXc

.

FIG. 78. A sketch of the b → c inclusive semileptonic decay spectrum calculated at the quark

level (continuous curve) compared to the known B → D(∗) spectrum (resonance lines). (From

Ref. [339].)

Of course, in general the hadronic level and quark level rates cannot be identical even
at very high energies due to the structure of the singularities in the multiparticle thresholds
and quark-gluon production thresholds. However, in computing the semileptonic widths one
integrates over the leptonic variables, which amounts to a smearing of the quark level width.
In analogy with electron scattering, the equality between the smeared quark and hadronic
widths is referred to as global duality, whereas local duality refers to equality between the
unsmeared widths. For the example of saturation of the B → Xc l ν̄l rate by two hadronic
final states, D and D∗, a local duality clearly cannot be defined in terms of the mass of the
final state MXc

: duality in this case sets in at threshold since even as δm approaches zero
as mb → ∞, the heavy recoiling c quark has an energy much greater than ΛQCD. In the SV
limit it must therefore hadronize with unity probability as D and D∗ [340]. As in electron
scattering, the issue is not whether duality holds in semileptonic heavy meson decay, but
rather how accurately it holds.

While the relationship between the quark and hadronic results in the heavy quark limit
is clear, a debate has existed over the leading corrections in the 1/mQ expansion, and
the degree to which duality is violated at finite mQ. In particular, there has been some
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controversy about whether the leading corrections to the heavy quark limit enter at O(1/mQ)
or O(1/m2

Q) — see e.g., Refs. [334,339–342].
Using the operator product expansion method developed by Voloshin and Shifman [331],

Bigi et al. [341] expanded the inclusive decay width for a heavy meson in terms of local
operators containing QQ̄ and gluon fields. The imaginary part of the forward Q → Q am-
plitude was expressed as a series of local operators of increasing dimension, with coefficients
proportional to powers of 1/mQ. Bigi et al. [341] find that there are no terms in this ex-
pansion which are linear in mQ: the leading nonperturbative corrections to the widths arise
only at order 1/m2

Q. The reason for this is that the only operators containing QQ̄ that can
induce 1/mQ terms are of dimension four, and these operators either vanish (in the case of
total derivatives) or can be reduced via the equations of motion to the original quasi-free
operator QQ̄.

On the other hand, it was suggested [339] that hadronic thresholds can lead to viola-
tions of duality at O(1/mQ) which do not appear explicitly in the OPE, and which could
significantly compromise the reliability with which Vcb can be extracted. In the infinite mass
limit, duality in this picture arises through a cancellation between the fall-off of the ground
state contribution and the corresponding rise of the excitations. At finite mass, however,
there is some mismatch near zero recoil, which could be of order 1/mQ. Isgur [339] and
Le Yaouanc et al. [343] have studied these possible violation of duality using nonrelativistic
quark models.

These results have been challenged, however, by Bigi & Uraltsev [334], who argue
that the analyses in Refs. [339,343] are based on a different OPE scheme to that used in
Refs. [341,344], and that these differences lead precisely to the terms which are interpreted
in [339,343] as violating duality at order 1/mQ. Given that the extraction of fundamental
Standard Model parameters — the CKM matrix elements Vcb and Vub — relies critically on
duality, it is clearly vital to understand the degree to which duality holds for B decays, and
the size of the duality violations. We shall see in the next section that a similar understand-
ing of duality and its violations is important in nonleptonic decays of heavy mesons.

3. Nonleptonic (Hadronic) Weak Decays

The discussion of duality in nonleptonic (i.e., hadronic) weak decays of heavy mesons
follows closely that of semileptonic decays, albeit with some important differences. Whereas
for semileptonic decays the heavy meson decays into one heavy meson in the final state, the
presence of two hadronic currents in nonleptonic decays requires a factorization of the final
state hadrons. In general such factorization has been demonstrated only in special cases,
such as for QCD with Nc → ∞. Moreover, since for nonleptonic decays there are no lepton
momenta to be integrated over, a more local version of duality needs to exist in order to
relate hadronic observables with those calculated from the OPE [345]. Consequently duality
violations in nonleptonic decays have also been the subject of controversy [341,345–349].

Working in a special limit which combines the heavy quark and large-Nc limits, Shifman
[350] considered to what extent factorization of weak matrix elements can hold in the pres-
ence of finite 1/Nc corrections. The process considered involves a heavy quark Q decaying
into two heavy quarks Q′ and Q′′ and a light antiquark q̄′,
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Q→ Q′ +Q′′ + q̄′ , (295)

with the kinematics defined such that

mQ′ = mQ′′ ≡M , mQ = 2M + ∆ , M ≫ ∆ ≫ ΛQCD . (296)

This generalizes the SV limit in that the heavy quarks produced are extremely slow and at
the same time very energetic. In this generalized limit Shifman [350] showed that a quark
level description of the process Q → Q′ +Q′′ + q̄′ duals the hadron level description of the
transition of the initial meson (Qq̄) into two heavy final state mesons,

(Qq̄) → (Q′q̄) + (Q′′q̄′) , (297)

or

(Qq̄) → (Q′q̄′) + (Q′′q̄) . (298)

In this case the two-meson final state saturates the partonic decay, with each additional final
state meson suppressed by a power of 1/Nc. To leading order in the 1/Nc expansion, one
finds that the total weak decay amplitude factorizes for the process in Eq. (297) as [350]

〈
(Q′q̄) (Q′′q̄′)

∣∣∣ Q̄′ Γµ Q Q̄′′ Γµ q′
∣∣∣ (Qq̄)

〉

=
〈
(Q′q̄)

∣∣∣ Q̄′ Γµ Q
∣∣∣ (Qq̄)

〉 〈
(Q′′q̄′)

∣∣∣Q̄′′ Γµ q′
∣∣∣ 0
〉
, (299)

where Γµ = γµ(1 − γ5), and similarly for the process in Eq. (298). The total quark decay
width at leading order in 1/M then becomes [350]

dΓq

dEq′
= 2Nc

(
κ2

1 + κ2
2 +

2κ2
1κ

2
2

Nc

)
M2 E2

q′

π3

√
∆ −Eq′

M
, (300)

where κ1 and κ2 give the respective strengths of the transitions (297) and (298), respectively.
Assuming that the ground state of the initial meson (Qq̄) is a pseudoscalar (as for B

or D mesons), the hadronic width is calculated by summing over exclusive transitions from
the ground state to pseudoscalar and vector (Q′q̄) or (Q′q̄′) states, and over transitions from
the vacuum to scalar and vector (Q′′q̄′) or (Q′′q̄) states. If the mass of the excited state is
M + δ, with δ ≫ ΛQCD, the total (integrated) hadronic rate is given in the Nc → ∞ limit
by [350]

Γh = 2Nc

(
κ2

1 + κ2
2

)M2

π3

∫ ∆

0
dδ δ2

√
∆ − δ

M
, (301)

which coincides exactly with the quark rate (300) if one identifies δ with Eq′ . In this limit
one therefore not only observes duality, but the duality is also local on the Dalitz plot.

Of course the limit (296) is somewhat far from reality — for the decay B → Dπ it would
correspond to mc = md = M , while mu = 0! However, it does provide a useful illustration
of the workings of duality in hadronic decays of heavy mesons.
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D. Proton-Antiproton Annihilation

To complete our survey of quark-hadron duality in reactions other than electron scatter-
ing, we consider a novel application of duality discussed recently in the context of proton–
antiproton annihilation into photons, pp̄ → γγ [351]. The similarity of this process with
Compton scattering, viewed in the crossed channel, suggests that under certain kinematic
conditions it may be described in terms of generalized parton distributions (see Sec. VE3)
through the dominance of the handbag diagram [352–354]. The appearance of duality in
this reaction may therefore have elements in common with Bloom-Gilman duality in DIS.

In contrast to forward Compton scattering, where the “diquark” system is a spectator, in
the pp̄ → γγ process the diquarks effectively annihilate into the vacuum, without emitting
additional particles. In the limit s→ ∞ this constrains the diquarks to have zero momentum,
and the annihilating qq̄ pair must therefore carry all of the momentum of the hadrons, x→ 1
[352–354]. However, as Close & Zhao [351] point out, for s→ ∞ there are coherent, higher-
twist contributions associated with the “cat’s ears” topologies (see Fig. 46(b)) which are of
the same order of magnitude as the handbag diagram.

Phenomenologically the descriptions of Compton scattering and other processes in terms
of leading-twist contributions have been relatively successful, even at intermediate values of
s. Close & Zhao suggest [351] how the handbag dominance of pp̄ annihilation could arise
from quark-hadron duality when a suitable average over coherent contributions is made.

As discussed in Sec. VB2 for inclusive electron scattering, the excitation of positive and
negative parity intermediate state resonances gives rise to constructive interference for the
incoherent contributions (proportional to e2q), but destructive for the coherent (eqeq′) terms.
Similarly in the crossed channel, pp̄ → γγ (or equivalently γγ → pp̄), one finds that terms
proportional to

∑
q 6=q′ eqeq′ are suppressed because of destructive interference between even

and odd parity excitations in the intermediate state.
Using a generalized form for the structure function from the model study of generalized

parton distributions described in Sec. VE3, Close & Zhao [351] suggest a factorized ansatz
for the crossed channel structure function in the limit where the momentum fractions of the
annihilating partons in the p and p̄ are same, ξ = xp − xp̄ → 0,

F2(x, ξ → 0, s) =
∑

q

e2q xq(x) Fel(s) , (302)

where Fel(s) is the elastic form factor, and

1

2

∫ 1−|x|

ξ=−1+|x|

dξ

x
F2(x, ξ, s = 0) =

∑

i

e2i [θ(x)q(x) − θ(−x)q(−x)] . (303)

A further consequence of this simple model is that the annihilation cross sections for pp̄ and
nn̄ are determined by the constituent quark charges, σ(pp̄)/σ(nn̄) = (2e2u + e2d)/(2e

2
d + e2u) =

3/2.
While more elaborate models would be needed for quantitative comparisons with data,

the scheme described here gives a plausible mechanism to support the dominance of the
leading-twist process in a region where its justification is otherwise questionable. Further-
more, it underscores the versatility of quark-hadron duality in finding application in a wide
range of phenomena.
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E. Reprise

The examples highlighted in this section indeed give strong support to the thesis that
quark-hadron duality is not an isolated phenomenon but is a general feature of the strongly
interacting landscape, of which Bloom-Gilman duality is one, albeit particularly striking,
manifestation. The common features of hadronic sums leading to observables characterized
by independence of scale can be seen in many different physical phenomena, such as the
seminal e+e− annihilation into hadrons, as well as in numerous theoretical applications,
most overtly in QCD sum rules. The scale independence is most conveniently accounted for
by the presence of free, point-like constituents of hadrons, which is naturally accommodated
through the existence of asymptotic freedom in QCD.

The crucial element in this “global” duality is the availability of a complete set of hadronic
states, which is realized more effectively with increasing energy. The existence of duality in
QCD is thus an inevitable consequence of confinement, which guarantees the orthogonality of
quark-gluon and hadronic states and ensures no double counting, and asymptotic freedom,
which allows perturbative descriptions at the quark level. Of course the details of the
physical realization of duality must depend on specific applications, so that the energy at
which duality can be said to hold at a given level will in general not be universal.

More intriguing perhaps, and more challenging from a theoretical perspective, is the
appearance of “local” duality, in which a quark-hadron correspondence exists even when a
small subset of hadronic states is summed over. As we have seen in the example of semi-
leptonic weak decays of heavy mesons, as few as two final states can be sufficient to saturate
the quark level result. In some cases local duality relations can be derived between a single
hadronic state and the high-energy continuum, as illustrated in the vector meson dominance
picture of e+e− annihilation. With clear parallels to the threshold relations between elastic
form factors and leading-twist structure functions at x ∼ 1, occurrences of local duality in
other applications are suggestive, although understanding the dynamics responsible for local
duality in QCD remains an important future pursuit.

Clearly, the concept of duality is an indispensable one in many areas of hadronic physics,
and new applications continue to be found [352,355–360]. While the study of the origin
of duality provides us with important clues to the inner workings of QCD, it is equally
vital to understand violations of duality. As illustrated by the example of heavy meson
decays, knowledge of the magnitude of higher-twist (1/m2

Q) corrections within the OPE is
essential for the extraction of CKM matrix elements. Similarly, control over higher twists
has enormous practical benefits in electron scattering, such as in understanding the limits of
applicability of leading-twist parton distribution function analyses, as well as in unraveling
the long-range quark-gluon correlations in hadrons. In the next section we delve further into
the practical relevance of duality, and outline plans for its future experimental study.
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VII. OUTLOOK

In this section we take a somewhat longer-term perspective, and examine the prospects
for experimental duality studies over the next decade. We discuss improvements which are
expected in measurements of inclusive structure functions, both in electron and neutrino
scattering, as well as in the relatively new realm of meson electroproduction. We begin,
however, with a short discussion of the practical relevance of improving our understanding
of the duality phenomenon.

A. Why is Duality Relevant?

Most theoretical studies of duality to date have concentrated on establishing how coherent
resonance transitions excited in electron–nucleon scattering conspire to obtain the scaling
behavior as expected from the underlying electron–quark scattering mechanism. Describing
this transition in terms of narrow resonances built up from valence quarks can be motivated
partly by the large-Nc limit of QCD, in which only resonances “survive” [199], as well as the
experimental indication that duality seems to prevail in the small-Q2 region dominated by
valence quarks [58]. A number of recent model studies have also established conditions (such
as cancellations between states of different parity) under which a summation over nucleon
resonances can lead to the results expected from the parton model [102,117,215].

It is clear, nonetheless, that to understand the duality phenomenon in detail, one also
needs to consider the role of the nonresonant background. Indeed, the “two-component”
duality picture, postulated long ago in the context of hadron–hadron scattering, invokes
duality between resonances and nondiffractive (valence) contributions on the one hand,
and between the nonresonant background and diffractive (sea) effects on the other. In the
electromagnetic case, the requirement of this interplay is most strikingly illustrated by the
establishment of a precise (< 10% accuracy) local duality in the F2 structure function solely
in the ∆ resonance region. Here local duality still appears at a Q2 scale of 1 GeV2, even
though there is only a single resonance contribution, with only very small contributions from
tails of higher-mass resonances.

An obvious phenomenological path to investigate the interplay of resonant and nonres-
onant contributions in establishing quark-hadron duality would be within empirical models
such as the Unitary Isobar MAID model [361], which provide phenomenological descrip-
tions of inclusive and exclusive electron scattering reactions in the nucleon resonance region.
Beyond a verification of duality within phenomenological models, ab initio calculations in-
cluding both resonant and nonresonant contributions, especially in the the ∆ region, are
needed to understand duality at a more fundamental level.

Since duality appears to be a general phenomenon in QCD, with examples ranging from
e+e− annihilation and deep inelastic scattering, to inclusive decays of heavy quarks, dilepton
production in heavy ion reactions [362], and hadronic τ decays [332], one has to wonder
whether duality may be a general property of quantum field theories with inherent weak and
strong coupling limits. This is especially relevant in view of the recent revival of interest
in the relation between QCD and string theory [363–366]. String theory had its beginnings
in a theory of strong interactions, but went out of fashion following the birth of QCD.

169



Nevertheless, the notion that these theories may be dual descriptions has persisted, and the
interplay between gauge field theories and string theory is widely recognized. Indeed, it has
been rigorously shown that strings describe some large-Nc limits of QCD [199]. With the
realization by Maldacena of a duality between descriptions of higher-dimensional superstring
theory and supersymmetric SU(N) gauge field theories in four space-time dimensions [367],
exploration of the possible connections between QCD and string theory [364,365] will be of
great interest.

If we take quark-hadron duality to be a general property of QCD, it is still intriguing why
Nature has redistributed its global strength in specific local regions, and what the ultimate
origin of the duality violations is. This is nowhere better illustrated than in the transition
from large Q2 to Q2 = 0. Obviously, strong local duality violations from a simple parton
picture are found in the coherent, elastic channel in spin-averaged electron scattering, or the
elastic and N − ∆ channels in spin-dependent scattering. On the other hand, the higher
excitation regions have already far more available channels contributing, and consequently
mimic local duality more closely. Even more dramatically, for inclusive electron scattering
the region W 2 > 4 GeV2 already has a sufficient number of electroproduction channels that
experimentally one cannot distinguish between this region and the asymptotic high-energy
limit of electron–free quark scattering.

If duality is understood quantitatively, or if regions where duality holds to good precision
are well established, either experimentally or theoretically, then one can imagine widespread
practical applications of duality. The region of very high x, for instance, which has not been
explored at all experimentally due to the requirement of high-energy beams with sufficiently
high luminosity, will become accessible. The x→ 1 region is an important testing ground for
nonperturbative and perturbative mechanisms underpinning valence quark dynamics, and
is vital to map out if we hope to achieve a complete description of nucleon structure. A
good understanding of the large-x region will also have important consequences for future
high-energy searches for new physics at the Tevatron, Large Hadron Collider, and Next
Linear Collider [368]. Data from the nucleon resonance region, where quark-hadron duality
has been established, could be used to better constrain QCD parameterizations of parton
distribution functions, from which the hadronic backgrounds in high-energy collisions are
computed.

The large-x region also constitutes an appreciable amount of the moments of polarized
and unpolarized structure functions, especially for the higher moments. It is precisely these
moments that can be calculated from first principles in QCD on the lattice [369], in terms
of matrix elements of local operators. Presently, due to technical limitations, the lower
moments are typically calculated at scales Q2 ∼ 4 GeV2. A comparison of the moments of
leading-twist parton distributions with the measured moments at a given Q2 can in principle
tell us about the size of higher-twist effects at that Q2. On the other hand, since the x
dependence of structure functions cannot be calculated on the lattice directly, one cannot
easily use the lattice to learn about the degree to which duality holds locally. Indeed,
the ability to calculate a leading-twist moment on the lattice implicitly uses quark-hadron
duality to average the resonance contributions to a smooth, scaling function.

A quantitative understanding of quark-hadron duality, or more explicitly duality vio-
lations, may have other direct applications. The most clear-cut example is the problem
of the B meson semileptonic branching ratio [332]. Theoretical calculations obtained in a
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quark-gluon framework exceed the measured value by 10–20%. However, the possible local
duality violations in this ratio are at present not clear. If the duality violations could be
ruled out, such observations could lead to more precise tests of QCD, or to new physics at
higher-energy scales. As Shifman point out, “short of a full solution of QCD, understand-
ing and controlling the accuracy of quark-hadron duality is one of the most important and
challenging problems for QCD practitioners today” [332].

B. Duality in Inclusive Electron Scattering

There are several avenues for pursuing experimental duality studies in inclusive electron
scattering which will become accessible in the next few years. We focus on two of them here:
structure functions at low Q2, and structure functions at large Bjorken-x.

1. Low Q2 Structure Functions

As discussed in Section VA3, experimentally duality is seen to hold even in the low-Q2

regions where perturbative expansions would be expected to become unreliable, as one tran-
scends the region where perturbative high-energy techniques are applicable, to the strongly-
coupled, nonperturbative regime at Q2 = 0. We saw, for example, that the Q2 depen-
dence of the F2 structure function at intermediate x and the ratio R at x = 0.1, both at
Q2 ∼ 0.2 GeV2, do not follow expectations from electromagnetic current conservation. On
the other hand, there are indications of duality between resonance and continuum cross sec-
tions even at the real photon point (see Fig. 51), as well as in the resemblance of low-Q2 F2

structure function data and xF3 data from neutrino scattering (Fig. 17). The latter result
is particularly striking: it suggests that at low Q2 the F2 structure function is dominated
by valence quarks, with the sea contributions playing only a minor role.

Recent HERA experiments have shown that F2 at very low x (x ≈ 10−6), and corre-
spondingly very large W 2, can be described by perturbative evolution down to Q2 ≈ 1 GeV2,
provided one adopts a gluon distribution which vanishes at low x (referred to as a “valence-
like” gluon [370]) and a non-vanishing but small sea distribution. At even lower values of
Q2, in the same very low-x region, the dramatic collapse of the proton structure function
(Fig. 53) could be viewed as evidence for a smooth transition from pQCD to the real photon
point at Q2 = 0 [191,370]. Gauge invariance requires that the F2 structure function for
inelastic channels must vanish linearly with Q2 as Q2 → 0 [191].

Experimentally, however, at the values of x where the nucleon resonances are visible,
and for similar low Q2 (∼ 0.2 GeV2), the F2 structure function does not vanish linearly with
Q2. On the other hand, the nucleon resonances do seem to obey some sort of duality, so
the picture is currently somewhat murky. A possible resolution may involve a separate Q2

dependence for the vanishing of the large-x strength at small Q2 (governed by the nucleon
resonances), and for the growth of the small-x sea [80].

An experiment to investigate the detailed behavior of the nucleon structure functions
at low Q2, through the nucleon resonance region, has recently been carried out in Hall C
at Jefferson Lab [371], and is currently being analyzed. Data from this experiment will fill
the critical gap between Q2 ∼ 1 GeV2 and the photoproduction limit, Q2 = 0. This should
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enable one to determine whether the Q2 dependence observed in the nucleon resonance
region is due to the suppression of the large nucleon sea, or a reflection of the vanishing of
valence quark distributions at low Q2. Either way, it will provide valuable information on
the region of Q2 where the linear Q2 behavior of the F2 structure function sets in, and the
extent to which duality may be relevant in the very low-Q2 regime.

2. Structure Functions at Large x

The standard method to determine parton distribution functions is through global fits
[67,68,81] of data on structure functions measured in deep inelastic scattering and other
hard processes. It has been standard practice in these analyses to omit from the data base
the entire resonance region, W 2 < W 2

res = 4 GeV2 (or in some cases even < 10 GeV2).
If one could utilize this vast quantity of resonance data, one could not only significantly
improve the statistics, but also decrease uncertainties which arise from extrapolations of
parton distributions into unmeasured regions of x. An important consequence of duality is
that the strict distinction between the resonance and deep inelastic regions becomes artificial
— both regions are intimately related, and properly averaged resonance data can help us
understand the deep inelastic region.

Recall that for any finite Q2, one is always limited by kinematics to x < xres = Q2/(W 2
res−

M2 + Q2). Extending to very large x at a finite Q2, one always encounters the resonance
region, W < Wres. As discussed in Sec. VC, there are a number of reasons why the large-
x region is important. Firstly, given better constraints on the Q2 dependence at large x,
one could derive parameterizations for parton distributions directly from the data without
resorting to theoretical inputs for extrapolations to x = 1. Secondly, the region of x ≈ 1
is an important testing ground for mechanisms of spin-flavor symmetry breaking in valence
quark distributions of the nucleon [9,72,255]. Thirdly, with nuclear targets it would permit a
measurement of the nuclear medium modification of the nucleon structure function at large x
(nuclear EMC effect) [372], where the deviation from unity of the ratio of nuclear to nucleon
structure functions is largest, and sensitivity to different nuclear structure models greatest.
Finally, knowledge of quark distributions at large x is essential for determining high-energy
cross sections at collider energies, such as in searches for new physics beyond the Standard
Model [368], where structure information at large x feeds down through perturbative Q2

evolution to lower x at higher values of Q2.
A quantitative description of nucleon structure in terms of parton distribution functions

relies, however, on our ability to unravel in detail the Q2 dependence of the data. In partic-
ular, it is important to obtain more precise information on the regions of x and Q2 where
perturbative evolution [60] can no longer be considered the main mechanism responsible
for the Q2 dependence of the data. There are arguments [373], for example, which suggest
that xW 2, rather than Q2, is the natural mass scale of the twist expansion (since at large
x the struck quark becomes highly off-shell, with virtuality k2 ∼ k2

⊥/(1 − x)). Because
xW 2 ∼ Q2(1 − x), the difference between evolution in Q2 and in Q2(1 − x) becomes most
important at large x. Experimentally this seems to be confirmed using nucleon resonance
region data in a local duality framework [82], although a more thorough investigation using
additional large-x data should be pursued.

172



In perturbative QCD analyses performed so far higher-twist terms have been extracted
from data by applying a cut in the kinematics at W 2 > 10 GeV2 [374–376]. In Refs. [82,377]
it was shown that only a relatively small higher-twist contribution, consistent with the one
obtained in Refs. [374–376], is necessary in order to describe the entire set of F2 structure
function data. The low-W 2 region dominated by nucleon resonances was analyzed recently
by Liuti et al. [82] within a fixed-W 2 framework (i.e., for each resonance region), in the spirit
of the Q2(1 − x) evolution above. The higher-twist contributions in the nucleon resonance
region were found to be similar to those from W 2 > 10 GeV2, with the exception of the ∆
region where the effects were larger. Although it may seem a priori surprising that higher-
twist effects originally derived from deep inelastic data can also be extracted exclusively
from the resonance region, this follows automatically from quark-hadron duality.

Currently a concerted experimental effort is underway to measure both spin-averaged
and spin-dependent structure functions at intermediate Q2 (∼ 5 GeV2) and at large x.
The strategy of these experiments is to firstly verify duality in local resonance regions at
some scale Q2

0, and then use local duality to extend parton distributions to larger x for
Q2 > Q2

0. At present local duality has only been well quantified for the F2 structure function
at Q2 > 1 GeV2 [7,82], although as we saw in Sec. IV there are qualitative indications of
duality in other spin-averaged and spin-dependent structure functions as well.

In the near future a series of experiments in Hall C at Jefferson Lab will push mea-
surements of the unpolarized structure functions (for protons to heavy nuclei) up to the
largest values of x and Q2 attainable with a 6 GeV beam energy [378–381]. These will
extend existing measurements of the F2 structure function of the proton and deuteron up to
Q2 ≈ 7 GeV2 [378]. Since duality has been well verified for each of the individual resonance
regions already at Q2 >∼ 1 GeV2, the new data will allow extensions of measured parton
distributions with good precision up to x ≈ 0.9. In addition, the issue of Q2 versus W 2

evolution can be revisited with higher precision. The new measurements will also allow
high-precision extractions of the lower moments of the F2 structure function moments at
these Q2 values. Obvious extensions of this program to higher Q2 and x, both in the polar-
ized and unpolarized cases, are possible with the planned 12 GeV beam energy upgrade at
Jefferson Lab [242].

To experimentally verify proper extraction of F2 in the experiments using deuteron tar-
gets, the ratio R of longitudinal to transverse deuterium cross sections is required. A ded-
icated effort is being made using the longitudinal–transverse (LT) separation technique to
determine both the unpolarized structure functions F d

1 and F d
2 [379] over a similar Q2 range

as mapped out for the proton. This will provide a global survey of LT-separated unpo-
larized structure functions on deuterium throughout the resonance region with an order of
magnitude better precision than previously possible.

Two further experiments [380,381] will vastly extend the present FA
2 structure function

data using a large range of nuclear targets, spanning from 3He to 197Au. The emphasis of
these experiments will be twofold: to experimentally verify the observed scaling behavior
of FA

2 data in the region of x > 1 and Q2 > 3 GeV2, and to extend measurements of the
nuclear EMC effect to larger x values [382] and to few-body nuclei. Light nuclei are of special
interest due to their relatively large neutron excess, and because theoretical calculations of
the nuclear EMC effect can be based on better determined wave functions, in contrast to
heavier nuclei. They may help to differentiate, for example, between models of the nuclear
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EMC effect based on an A dependence or a density dependence of the magnitude of the
effect at x ∼ 0.6 [251].

To “round off” upcoming efforts to study the duality phenomenon in unpolarized struc-
ture functions, a dedicated experiment has been designed to extend the vast amount of
existing electron–proton scattering data to the neutron [383]. Compared to the structure
of the proton, much less is known about neutron structure due to the absence of free neu-
tron targets, and the theoretical uncertainties associated with extracting information from
neutrons bound in nuclei. This is especially critical at large x and in the resonance region.

To overcome this problem, the new experiment will measure the inclusive electron scatter-
ing cross section on an almost free neutron using the CEBAF Large Acceptance Spectrometer
(CLAS) and a novel recoil detector with a low momentum threshold for protons and high
rate capability (see Fig. 79). This detector will allow tagging of slow backward-moving spec-
tator protons with momentum as low as 70 MeV in coincidence with the scattered electron
in the reaction d(e, e′p)X. The restriction to low momentum will ensure that the electron
scattering takes place on an almost free neutron, with its initial four-momentum inferred
from the observed spectator proton. (For an alternative method of determining inclusive
neutron cross sections using a combination of 3He and 3H targets, see Ref. [384].)
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The spectator tagging technique will be used to extract the structure function F n
2 over

a large range of Q2 (up to ∼ 5 GeV2) and W (from the elastic peak to W = 3 GeV). The
kinematic coverage, including the elastic and resonance regions, as well as part of the deep
inelastic continuum, will allow the first quantitative tests of quark-hadron duality in the
neutron. As discussed in Sec. VC2, Close and Isgur [102] argued using a quark model that
the neutron structure functions should exhibit systematic deviations from local duality, and
that duality should occur at higher W for the neutron than the proton.

For spin-dependent scattering, two experiments will access the g1 structure function in
the nucleon resonance region up to Q2 = 5 GeV2. The CLAS Collaboration routinely has
running periods scattering polarized electrons from polarized NH3 and ND3 targets [115].
The Hall A Collaboration has also just performed a measurement scattering polarized elec-
trons from a polarized 3He target [123] to test duality in the neutron gn

1 structure function,
and the data are currently being analyzed.

The precision of the g1 structure function data will be further enhanced by the results
of the LT-separated unpolarized structure function data in a similar Q2 region, and by two
Hall C experiments at Jefferson Lab to fully disentangle the g1 and g2 structure functions.
These latter experiments will in particular determine the g2 structure function with high
precision at Q2 = 1.3 GeV2 [113] and Q2 ∼ 5 GeV2 [385], respectively. Data at Q2 =
1.3 GeV2 are presently under analysis.

The onset of duality in all spin-averaged and spin-dependent structure functions will
soon be well verified up to Q2 = 5 GeV2. The combination of LT-separated unpolarized
F1 and F2 structure functions, in addition to separated polarized electron scattering data
determining g1 and g2, will allow for unprecedented precision tests of duality in nucleon
structure functions. It will in addition reveal the extent to which duality can be used to
access the x → 1 region, and should shed considerable light on this somewhat obscure but
vital corner of phase space.

C. Neutrino Scattering

In discussing Bloom-Gilman duality in this report, we have dealt almost exclusively
with observables measured using electron scattering. Weak currents, on the other hand,
can provide complementary information on the quark structure of hadrons, not accessible
to electromagnetic probes. In particular, neutrino-induced reactions can provide impor-
tant consistency checks on the validity of duality. While deep inelastic neutrino structure
functions are determined by the same set of universal parton distribution functions as in
charged lepton scattering, the structure of resonance transitions excited by neutrino beams
is in some cases strikingly different to that excited by virtual photons. Although on gen-
eral grounds one may expect that a Bloom-Gilman type duality should also exist for weak
structure functions [104], the details of how this manifests itself in neutrino scattering may
be quite different from that observed in electron scattering.

Unfortunately, current neutrino scattering data are sparse in the resonance region [386],
and due to the small weak cross sections is often only available for heavy nuclei (where large
target volumes are easier to handle and are more affordable than light nuclei) [387]. It has
not been possible therefore to make any concrete statements to date about the validity of
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duality in neutrino scattering.
The main difference between electron and neutrino scattering reactions can be most

easily understood considering specific resonance transitions. While a neutrino beam can
convert a neutron into a proton, it cannot convert a proton into a neutron, for example
(and vice versa for an antineutrino beam). Similarly, there are dramatic differences between
inelastic production rates in the ∆ resonance region [101,388] — because of charge conser-
vation, only transitions to isospin-3/2 states from the proton are allowed. The prospect
of high-intensity neutrino beams at Fermilab, as well as in Japan and Europe, offers a
valuable complement to the study of duality and resonance transitions. For example, the
recently-approved MINERνA experiment [389] at Fermilab will be an exceptional tool for
such measurements. The goal of MINERνA will be to perform a high-statistics neutrino-
nucleus scattering experiment using a fine-grained detector specifically designed to measure
low-energy neutrino-nucleus interactions accurately. The high-luminosity NuMI beam line
at Fermilab will provide energies spanning the range ∼ 1−15 GeV, over both the resonance
and deep inelastic regimes, making MINERνA a potentially very important facility to study
quark-hadron duality in neutrino scattering.

A particularly interesting measurement would be of the ratio of neutron to proton neu-
trino structure functions at large x. Here, similar valence quark dynamics as in charged
lepton scattering are probed, but with different sensitivity to quark flavors. At the hadronic
level, quark model studies reveal quite distinct patterns of resonance transitions to the
lowest-lying positive and negative parity multiplets of SU(6) [101,117,248,249]. The contri-
butions of the N → N∗ transition matrix elements to the F1 and g1 structure functions of
the proton and neutron in the SU(6) quark model are displayed in Table III. Summation
over the N → N∗ transitions (for the case of equal symmetric and antisymmetric contribu-
tions to the wave function, λ = ρ) yields the expected SU(6) quark-parton model results,
providing an explicit confirmation of duality. On the other hand, some modes of spin-flavor
symmetry breaking (λ 6= ρ) yield neutrino structure function ratios which at the parton
level are in obvious conflict with those obtained from electroproduction, as shown in Table I
in Sec. VC2. Neutrino structure function data can therefore provide valuable checks on the
appearance of duality and its consistency between electromagnetic and weak probes.

SU(6) rep. 28[56+] 410[56+] 28[70−] 48[70−] 210[70−] total

F νp
1 0 24λ2 0 0 3λ2 27λ2

F νn
1 (9ρ+ λ)2/4 8λ2 (9ρ− λ)2/4 4λ2 λ2 (81ρ2 + 27λ2)/2

gνp
1 0 −12λ2 0 0 3λ2 −9λ2

gνn
1 (9ρ+ λ)2/4 −4λ2 (9ρ− λ)2/4 −2λ2 λ2 (81ρ2 − 9λ2)/2

TABLE III. Relative strengths of neutrino-induced N → N∗ transitions in the SU(6) quark

model [117]. The coefficients λ and ρ denote the relative strengths of the symmetric and antisym-

metric contributions, respectively, of the ground state wave function. The SU(6) limit corresponds

to λ = ρ.

Similarly, it would be of particular interest to verify the onset of duality in the xF3

structure function in deep inelastic neutrino scattering. The xF3 structure function describes
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the response to the vector–axial vector interference, and is as such associated with the parity-
violating hadronic current. Consequently in the quark-parton model the xF3 structure
function measures the difference of quark and antiquark distributions, and is insensitive to
sea quarks. As described in Sec. IV, the resemblance of the average F2 electroproduction
structure function at low Q2 in the nucleon resonance region to the measured deep inelastic
xF3 structure function [58] suggests a sensitivity to resonant contributions only. If the
interplay between resonances and nonresonant backgrounds is an important contributor to
the onset of duality, one could anticipate this onset to occur at larger Q2 scales in the xF3

structure function.
Lastly, it is worth mentioning that a large effort to consistently model electron, muon,

and neutrino scattering is currently being undertaken [390]. Data from atmospheric neutrino
experiments [391] and neutrinos from the Sun [392,393] have been interpreted as evidence for
neutrino oscillations. These neutrino data dictate the need for next generation, accelerator-
based, oscillation experiments using few-GeV neutrino energies. Good modeling of neutrino
cross sections at low energies is needed for this upcoming generation of more precise neutrino
oscillation experiments. This is particularly true for neutrinos in the region around 1 GeV,
where, for example, single-pion production comprises about 30% of the total charged-current
cross section. A solid understanding of the transition between the deep inelastic and reso-
nance production regimes will be crucial to this effort. Because of experimental resolution
and Fermi motion (for nuclear targets) a description of the average cross section in the res-
onance region is expected to be sufficient, and hence duality can also be used as a tool to
model this transition.

D. Duality in Meson Electroproduction

While considerable insight into quark-hadron duality has already been gained from in-
clusive electron scattering studies of the F1, F2, and g1 structure functions, duality in the
case of semi-inclusive meson photo- and electroproduction is yet to be as thoroughly tested
experimentally. Here, duality would manifest itself in an observed scaling in the meson plus
resonance final state [149].

As discussed in Secs. IVD and VD, at high energies one expects factorization between
the virtual photon–quark interaction, and the subsequent quark → hadron fragmentation.
In this case the eN → e′hX reaction cross section, at leading order in αs, is simply given
by a product of the parton distribution function and a quark fragmentation function to a
specific hadron h. We will initially restrict ourselves to the hadron being an energetic meson
(π or K) detected in the final state in coincidence with the scattered electron. The detected
meson is assumed to carry most, but not all, of the energy transfer, such that other mesons
may also be produced. We will come back to heavier mesons and baryons at the end of this
section.

By selecting only mesons carrying most of the energy transfer, one can more cleanly
separate the target and current fragmentation regions. However, at low energies the struck
quark still converts into the meson in the vicinity of the scattering process, and it is not
obvious that here one can make the simplifying assumption of factorization. Nonetheless,
if duality holds one may see behavior consistent with the simple high-energy factorization
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picture, and recent data does tend to support factorization at lower energies than previously
assumed.

The implication for semi-inclusive scattering is then that the overall scale of scattering
in the low-W ′ region must mirror that at high W ′, where W ′ is the mass of the unobserved
hadrons. This surprising property may come about if the various decay channels from
resonances with varying W ′ interfere in such a way as to produce factorization. Obviously,
this would require a nontrivial interference between the decay channels, although there are
empirical indications for such behavior from hadronic τ decays [332], as well as theoretically
in quark model studies [102] (see Sec. VD). Schematically, the resonance region would
appear here as the exclusive limit of a high-energy fragmentation function Dq→h(z,Q

2),
similar to the momentum spectrum of produced hadrons in the inclusive hadron production
reaction γ∗N →MX in Fig. 70 [226].

These considerations strongly suggest that a beam energy of order 10 GeV will provide
the right kinematical region to quantitatively study the appearance of duality, and the
associated onset of factorization, in meson electroproduction. In the framework of duality,
separating current and target fragmentation regions and restricting oneself to the region
W ′ > 2 GeV (beyond the resonance region of the residual system after removal of the meson)
are sufficient conditions to mimic the high-energy limit. An upcoming Hall C experiment at
JLab [161] will investigate this in detail, addressing two main questions: (i) Do the γ∗N →
π±X cross sections factorize at low energies and reproduce the fragmentation functions
determined from high-energy scattering? (ii) Do nucleon resonances average around these
high-energy fragmentation functions and exhibit duality? Duality may still be found in these
processes, regardless whether factorization (in x and z) does or does not hold [102].

If factorization is found to hold, it can open up new lines of investigation into quark
fragmentation and QCD at ∼ 10 GeV energies. Jefferson Lab with a 12 GeV electron beam
[242] would be an ideal facility to study meson production in the current fragmentation
region at moderate Q2, allowing the onset of scaling to be tracked in the pre-asymptotic
regime. This would allow for unprecedented studies of the spin and flavor dependence of
duality, which can be most readily accessed through semi-inclusive electron scattering. In
addition, one could also study the role of duality in exclusive reactions, such as deeply
virtual Compton scattering or (hard) pion photoproduction (Secs. VE3 and VE4), which
may answer the important practical question of whether the recently developed formalism
of generalized parton distributions is applicable at intermediate energies.

At higher energies (∼ 100–200 GeV) experiments at CERN [394] have demonstrated the
existence of a clear separation between current and target fragmentation regions. Although
these data have been accumulated at high W ′, there does not seem an a priori reason why
such separation would not persist into the low-W ′ region, for sufficiently high energies. Ex-
tending such data into the unexplored low-W ′ region would enable a detailed investigation
of duality in the current fragmentation region with various meson and baryon tags, in ad-
dition to a search for duality in target fragmentation. With new data on semi-inclusive
scattering in and beyond the resonance region, one can use tags of various mesons to test
whether sensitivity to sea quarks can be enhanced with K− or φ mesons, where resonances
are not easily produced in the residual system, and what the vector mesons are dual to. An
understanding of duality for baryon tags and target fragments would be the next challenge
for electron scattering experiments.
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FIG. 80. Schematic layout of the electron-Relativistic Heavy Ion Collider (eRHIC) under inves-

tigation at Brookhaven National Laboratory [395,396] (left), and the Electron-Light Ion Collider

(ELIC) at Jefferson Lab [397] (right).

Higher electron energies would also enable one to investigate duality in the heavy quark
sector [338–340], and that between hadrons and jets [276] (Sec. VD 2). The higher center of
mass energy projected at the electron–hadron colliders presently under discussion at both
Brookhaven National Laboratory and Jefferson Lab [395,396] (see Fig. 80) will allow for a
superior tool to perform such studies. Despite a lower luminosity than available for fixed-
target experiments, such a collider would use its far higher center of mass energy to enable
measurements transcending the region where perturbative QCD calculations are more readily
applicable, and factorization of current and target fragmentation regions less problematic.
The development of such facilities offers an exciting opportunity to push our understanding
of hadron structure far beyond its present limits.
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VIII. CONCLUSION

The historical origins of quark-hadron duality can be traced back to the 1960s, and the
discovery of s- and t-channel duality in hadronic reactions. This duality reflected the remark-
able relationship between low-energy hadronic cross sections and their high-energy behavior,
which, in the context of finite energy sum rules, allowed Regge parameters (describing high-
energy scattering) to be inferred from the (low-energy) properties of resonances.

It was natural, therefore, that the early observations of a duality between resonance
production and the high-energy continuum in inclusive electron–nucleon deep inelastic scat-
tering would be interpreted within a similar framework. Bloom & Gilman found that by
averaging the proton F2 structure function data over an appropriate energy range the result-
ing structure function closely resembled the scaling function which described the high-energy
scattering of electrons from point-like partons.

With the emergence of QCD came the realization that at a fundamental level the quark-
hadron duality phenomenon reflects the transition between the physics of nonperturbative
and perturbative QCD. In particular, the development of the operator product expansion in
high-energy physics allowed a very simple interpretation of duality in terms of leading-twist
parton distribution functions, with violations of duality attributed to higher-twist effects
associated with nonperturbative multi-parton correlations.

Simply from unitarity, the access to a complete set of states means that descriptions
of observables in terms of either quark and gluon or hadronic degrees of freedom must
be equivalent, which itself is a statement about the existence of confinement in QCD. In
practice, however, the computation of observables in different kinematic regions is often made
considerably easier with a different choice of basis; in terms of hadrons at low energies, or in
terms of quarks and gluons at high energies. The existence of regions where both truncated
quark-gluon and hadronic bases can provide accurate descriptions is one of the remarkable
consequences of duality. The same forces of confinement also mean, however, that there
must exist a limit to how small these regions can be, and that duality must eventually break
down at a very local level.

Electron scattering provides a wonderful stage for investigating the dynamical origin of
quark-hadron duality. The perturbative scaling of the deep inelastic structure functions
occurs here in terms of the parton light-cone momentum fraction x, which can be accessed
at different values of Q2 and W 2, both within and outside the resonance region. Hence, both
the resonance spectra and the scaling function describing the high-energy cross section can
be mapped by varying the mass Q2 of the virtual photon.

Following the pioneering deep inelastic scattering experiments at SLAC over three
decades ago, the availability of (continuous wave) high-luminosity polarized beams, together
with polarized targets, has allowed one to revisit Bloom-Gilman duality with unprecedented
precision, and disentangle its spin, flavor, and nuclear dependence, both in local and global
regions. The results have been striking: quark-hadron duality occurs at much lower Q2 and
in far less limited regimes than could have been expected.

For spin-averaged structure functions, the resonance region spectra agree to better than
10% precision with the perturbative scaling function, down to Q2 as low as 0.5 GeV2. This
is true for both the transverse and longitudinal structure functions, which is all the more
remarkable given that the longitudinal structure function is associated with higher-twist
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contributions in QCD. Moreover, the quark-hadron duality phenomenon is found to occur
in fairly local regions ofW 2, working quite well even in the region where only the ∆ resonance
resides. In nuclei, the well established ξ-scaling behavior is found to be just a reflection of
the nucleus averaging the nucleon electromagnetic response over a finite energy range, by
virtue of the nucleon Fermi motion.

For spin-dependent structure functions, the onset occurs at higher Q2, but indications
are that also here the transition to perturbative scaling behavior is mostly complete by
Q2 = 2 GeV2, even for local regions of W 2. The slower onset of duality reflects the greater
role played by the ∆ resonance (as the ground state of the spin-3/2 states) here than in spin-
independent scattering. Nonetheless, the region beyondW 2 = 2 GeV2 already closely follows
the perturbative scaling behavior for Q2 >∼ 0.8 GeV2. The existing evidence indicates that
duality works at lower Q2 for the neutron than the proton, but additional data are needed
to quantify this more precisely.

The reported experimental developments in the study of quark-hadron duality have co-
incided with considerable progress made over the last few years in our theoretical under-
standing of this phenomenon. Perturbative QCD calculations are now available with high
precision, making detailed studies of the Q2 dependence of structure functions possible. Mo-
ment analyses of structure function data show surprisingly small amounts of higher-twist
contributions to the low moments, suggesting that single quark processes dominate the scat-
tering mechanism even down to Q2 ∼ 1 GeV2 for some observables. It is not yet understood,
however, from first principles in QCD why a leading-twist description should provide a good
approximation to structure functions at such low Q2.

Indeed, while the operator product expansion allows one to identify and organize the
duality violations in terms of the matrix elements of higher-twist operators, it cannot by
itself explain why certain higher-twist matrix elements are small, or cancel. Physical insight
into the origins of early (or “precocious”) scaling requires nonperturbative methods, such
as lattice QCD, or QCD-inspired models, in order to understand the dynamics responsible
for the transition to scaling. While lattice simulations of leading-twist matrix elements
are approaching a relatively mature stage, with direct comparisons with experiment soon
feasible, calculations of higher-twist matrix elements are still in their infancy.

In light of this, many of the recent developments on the theoretical front have been in
the context of models, with varying degrees of sophistication, which have allowed a number
of important features of the quark-hadron transition in structure functions to be elucidated.
An important realization has been that resonances themselves constitute an integral part
of scaling structure function, and that the traditional resonance–scaling distinction is some-
what arbitrary. Phenomenologically, while the traditional resonance region (W <∼ 2 GeV)
contributes a significant part of the total structure function at low Q2 (∼ 70% for the
n = 2 moment of F p

2 at Q2 = 1 GeV2), the higher-twist contributions at the same Q2 are
considerably smaller (∼ 10% of the total F p

2 moment).
Theoretically, this dichotomy can be dramatically illustrated in the large-Nc limit of

QCD, where the hadronic spectrum consists of infinitely many narrow resonances, which
are protected from strong decay by the suppression of sea quark loops. Since the quark level
calculation yields a smooth, scaling function, some form of resonance averaging is needed to
yield the required quark-hadron duality, even in the limit as Q2 → ∞. This can be explicitly
demonstrated in the case of 1+1 dimensions (the ’t Hooft model), or in models which provide
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generalizations to 3+1 dimensions. Other model studies have clarified how scaling can arise
in the presence of strong confining interactions responsible for the formation of bound state
resonances. For the case of a harmonic oscillator potential, the energy spectrum can be
calculated exactly, and the inclusive structure function obtained from a direct sum over the
squares of transition form factors.

At first sight the equivalence of a coherent sum over exclusive N → N∗ transitions and
an incoherent sum over individual quark contributions to the inclusive structure function
seems impossible; the former (in the case of electric couplings) is proportional to the square
of a sum of quark charges, while the latter is given by the sum over the squares of quark
charges. A resolution of this dilemma comes with the observation that interference effects,
such as those between even- and odd-parity excited states, can result in cancellations of the
duality-violating cross terms (which can be identified with higher-twist, multi-parton effects),
exposing the leading-twist, diagonal contributions which interfere constructively. Critical to
this observation is the fact that a certain minimum subset of states must be summed over in
order for duality to be saturated. Such patterns of constructive and destructive interference
can be realized in phenomenological models, such as the nonrelativistic quark model and its
various extensions, for both unpolarized and polarized structure functions.

Although these studies have shed considerable light upon the dynamical origins of quark-
hadron duality, there are still important questions which need to be addressed before we
come to a quantitative understanding of Bloom-Gilman duality in the structure function
data. The observation of duality in spin-averaged structure functions in the region of the ∆
resonance, for instance, suggests nontrivial interference effects between resonant and non-
resonant (background) physics. Early descriptions of the resonance and background con-
tributions employed the so-called two-component model of duality, in which the resonances
are dual to valence quarks (associated with the exchange of Reggeons at high energy), while
the background is dual to the qq̄ sea (associated with Pomeron exchange). In more modern
language, this would call for a QCD-based derivation in which the properties of the nonres-
onant background can be calculated within the same framework as those of the resonances
on top of which they sit.

It is also clear that the quark-hadron duality phenomenon is not restricted to inclusive
electron–hadron scattering alone. If, as we believe, it is a general property of QCD, then
it should manifest itself in other processes and in different observables. There are, in fact,
predictions for quark-hadron duality in semi-inclusive and exclusive electroproduction reac-
tions. The available evidence is scant, but it does suggest that at energy scales of a few GeV
such reactions may proceed by closely mimicking a high-energy picture of free electron-quark
scattering. This will be an exciting area of research for the next decade, within reach of the
energy and luminosity of 1–100 GeV electron scattering facilities.

Further afield, important lessons about Bloom-Gilman duality can be learned from dual-
ity in areas outside of electron-hadron scattering. The prototypical reaction in which duality
has been studied is e+e− annihilation into hadrons. Semileptonic and nonleptonic weak de-
cays of heavy mesons have provided extremely rich ground on which duality has been tested
and quantified. In fact, duality between heavy quarks and heavy mesons is vital here for the
extraction of fundamental Standard Model parameters such as the CKM matrix elements.
More recent applications of quark-hadron duality include deeply virtual Compton scatter-
ing, and pp̄ annihilation. Duality also underpins the entire successful phenomenology of the
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QCD sum rule method of computing hadronic observables.
It is truly remarkable that in a region where we have only a few resonances, all consisting

of strongly interacting quarks and gluons, the physics still ends up resembling a perturbative
quark-gluon theory. Quark-hadron duality is the underlying cause of the smooth transition
“on average” from hadrons to quarks witnessed in Nature, allowing simple partonic de-
scriptions of observables down to relatively low-energy scales. Unraveling the dynamics and
origin of quark-hadron duality may well hold the key to understanding the details of the
quark-hadron transition in QCD.
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APPENDIX: SCALING VARIABLES

Here we collate and summarize for reference the various scaling variables which are
commonly used in the literature, or which have been used in this report.

1. The classic scaling variable derived by Bjorken is defined in terms of the ratio of the
squared momentum and energy transferred to the nucleon,

x =
Q2

2Mν
, (304)

where M is the mass of the nucleon. This is the correct scaling variable in the Bjorken
limit, in which both Q2 and ν → ∞. In this limit the variable x corresponds to the
“plus”-component of the light-cone momentum fraction of the nucleon carried by the
struck parton. In the early literature one often encounters the inverse of the Bjorken-x
variable, namely

ω =
1

x
. (305)

2. Different variables have been suggested in order to improve the scaling behavior at
finite momentum transfer, in the pre-asymptotic region. Phenomenologically, Bloom
& Gilman introduced the variable [2]

ω′ =
2Mν +M2

Q2
= 1 +

W 2

Q2
= ω +

M2

Q2
, (306)

which they found gave better scaling in the F2 structure function in the resonance
region.

3. An improved scaling variable which was subsequently derived from the kinematics of
deep inelastic scattering at finite Q2 is the Nachtmann variable [12],

ξ =
2x

1 +
√

1 +Q2/ν2
=

2x

1 +
√

1 + 4M2x2/Q2
, (307)
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which takes into account target mass corrections, M2/Q2. Expanding ξ in powers of
1/Q2 at high Q2 gives

1

ξ
≈ ω +

M2

ωQ2
, (308)

which makes apparent the origin of the Bloom & Gilman variable ω′ above.

4. While the Nachtmann ξ variable is an improvement on Bjorken-x at finite Q2, it is,
however, not the most general scaling variable. It implicitly assumes massless, on-shell
quarks with zero transverse momentum. A generalization of the Nachtmann variable
to include finite quark masses m was made by Barbieri et al. [15],

ξBarb =
Q2 +

√
(Q2 + 4m2Q2

2Mν
(
1 +

√
1 +Q2/ν2

) . (309)

Here the initial and final quarks are taken to have the same mass, although the gen-
eralization to unequal masses is straightforward [15].

5. Including in addition the effects of quark transverse momentum, the light-cone mo-
mentum fraction of the nucleon carried by a parton can be written in its most general
form as

γ =
x

1 +
√

1 +Q2/ν2

(
1 − k2 −m2

Q2

)
1 +

√√√√1 +
4(k2 + k2

T )/Q2

(1 − (k2 −m2)/Q2)2


 , (310)

where k2 is the quark virtuality, and kT the quark transverse momentum. In the
limit k2/Q2 ∼ k2

T/Q
2 ∼ m2/Q2 ≪ 1, this variable reduces to the Nachtmann scaling

variable, γ → ξ.

6. Variables used in various model studies in this report include the nonrelativistic scaling
variable employed by Greenberg [207]

xnr =
~q 2

2Mν
, (311)

which uses ~q 2 rather than the four-momentum transfer squared, Q2.

7. Taking into account the effects of the spectator “diquark” system, once a quark has
been removed from the nucleon, Gurvitz [209] derived the light-cone momentum frac-
tion carried by a struck quark as

x̃ =
x+

√
1 + 4M2x2/Q2 −

√
(1 − x)2 + 4m2

sx
2/Q2

1 +
√

1 + 4M2x2/Q2
, (312)
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where ms is the mass of the spectator system. At large Q2, x̃ and ξ are related by
[209]

x̃ ≃ ξ +
M2x2

Q2
− m2

sx
2

(1 − x)Q2
, (313)

and x̃→ ξ → x in the limit Q2 → ∞.

8. The scaling variable u used in the heavy-light quark model of Isgur et al. [197] is given
by

u =
1

2m

(√
ν2 +Q2 − ν

)(
1 +

√

1 +
4m2

Q2

)
, (314)

which takes into account both target mass and quark mass effects [15] (cf. the variable
x̃ above). In the Bjorken limit the variable u becomes the scaled Bjorken variable,

u→ M

m
x . (315)

9. Finally, the West scaling variable y is defined in terms of the momentum q and energy
ν of the photon,

y = −q
2

+
mν

q
. (316)
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